References
- Arrowsmith, C.H., Bountra, C., Fish, P.V., Lee, K., and Schapira, M. (2012). Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384-400. https://doi.org/10.1038/nrd3674
- Barnett, P., van den Boogaard, M., and Christoffels, V. (2012). Localized and temporal gene regulation in heart development. Curr. Top. Dev. Biol. 100, 171-201. https://doi.org/10.1016/B978-0-12-387786-4.00004-X
- Bhaumik, S.R., Smith, E., and Shilatifard, A. (2007). Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008-1016. https://doi.org/10.1038/nsmb1337
- Black, J.C., Van, Rechem, C., and Whetstine, J.R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48, 491-507. https://doi.org/10.1016/j.molcel.2012.11.006
- Campaner, S., Spreafico, F., Burgold, T., Doni, M., Rosato, U., Amati, B., and Testa, G. (2011). The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol. Cell 43, 681-688. https://doi.org/10.1016/j.molcel.2011.08.007
- Cayuso, Mas, J., Noel, E.S., and Ober, E.A. (2011). Chromatin modification in zebrafish development. Methods Cell Biol. 104, 401-428. https://doi.org/10.1016/B978-0-12-374814-0.00022-7
- Del Rizzo, P.A., and Trievel, R.C. (2011). Substrate and product specificities of SET domain methyltransferases. Epigenetics 6, 1059-1067. https://doi.org/10.4161/epi.6.9.16069
- Dillon, S.C., Zhang, X., Trievel, R.C., and Cheng, X. (2005). The SETdomain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227. https://doi.org/10.1186/gb-2005-6-8-227
- Esteve, P.O., Chin, H.G., Benner, J., Feehery, G.R., Samaranayake, M., Horwitz, G.A., Jacobsen, S.E., and Pradhan, S. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. USA106, 5076-5081. https://doi.org/10.1073/pnas.0810362106
- Foreman, K.W., Brown, M., Park, F., Emtage, S., Harriss, J., Das, C., Zhu, L., Crew, A., Arnold, L., Shaaban, S., and Tucker, P. (2011). Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One 6, e22290. https://doi.org/10.1371/journal.pone.0022290
- Frank, B., Hemminki, K., Wappenschmidt, B., Klaes, R., Meindl, A., Schmutzler, R.K., Bugert, P., Untch, M., Bartram, C.R., and Burwinkel, B. (2006). Variable number of tandem repeats polymorphism in the SMYD3 promoter region and the risk of familial breast cancer. Int. J. Cancer 118, 2917-2918. https://doi.org/10.1002/ijc.21696
- Fujii, T., Tsunesumi, S., Yamaguchi, K., Watanabe, S., and Furukawa, Y. (2011). Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 6, e23491. https://doi.org/10.1371/journal.pone.0023491
- Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R., and Nakamura, Y. (2004). SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6, 731-740. https://doi.org/10.1038/ncb1151
- Hamamoto, R., Silva, F.P., Tsuge, M., Nishidate, T., Katagiri, T., Nakamura, Y., and Furukawa, Y. (2006). Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113-118. https://doi.org/10.1111/j.1349-7006.2006.00146.x
- Helin, K., and Dhanak, D. (2013). Chromatin proteins and modifications as drug targets. Nature 502, 480-488. https://doi.org/10.1038/nature12751
- Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J., and Tsai, H.J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30-40. https://doi.org/10.1002/dvdy.10356
- Kim, B., Kang, S., and Kim, S.J. (2012a). Differential promoter methylation and histone modification contribute to the brain specific expression of the mouse Mbu-1 gene. Mol. Cells 34, 433-437. https://doi.org/10.1007/s10059-012-0182-3
-
Kim, Y.S., Kim, M.J., Koo, T.H., Kim, J.D., Koun, S., Ham, H.J., Lee, Y.M., Rhee, M., Yeo, S.Y., and Huh, T.L. (2012b). Histone deacetylase is required for the activation of Wnt/
${\beta}$ -catenin signaling crucial for heart valve formation in zebrafish embryos. Biochem. Biophys. Res. Commun. 423, 140-146. https://doi.org/10.1016/j.bbrc.2012.05.098 - Kim, J.D., Kim, H.J., Koun, S., Ham, H.J., Kim, M.J., Rhee, M., and Huh, T.L. (2014). Zebrafish Crip2 plays a critical role in atrioventricular valve development by downregulating the expression of ECM genes in the endocardial cushion. Mol. Cells 37, 406-411. https://doi.org/10.14348/molcells.2014.0072
- Lehnertz, B., Rogalski, J.C., Schulze, F.M., Yi, L., Lin, S., Kast, J., and Rossi, F.M. (2011). p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol. Cell 43, 673-680. https://doi.org/10.1016/j.molcel.2011.08.006
- Oudhoff, M.J., Freeman, S.A., Couzens, A.L., Antignano, F., Kuznetsova, E., Min, P.H., Northrop, J.P., Lehnertz, B., Barsyte-Lovejoy, D., Vedadi, M., et al. (2013). Control of the hippo pathway by Set7-dependent methylation of Yap. Dev. Cell 26, 188-194. https://doi.org/10.1016/j.devcel.2013.05.025
- Pradhan, S., Chin, H.G., Esteve, P.O., and Jacobsen, S.E. (2009). SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics 4, 383-387. https://doi.org/10.4161/epi.4.6.9450
- Proserpio, V., Fittipaldi, R., Ryall, J.G., Sartorelli, V., and Caretti, G. (2013). The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev. 27, 1299-1312. https://doi.org/10.1101/gad.217240.113
- Sese, B., Barrero, M.J., Fabregat, M.C., Sander, V. and Izpisua Belmonte, J.C. (2013). SMYD2 is induced during cell differentiation and participates in early development. Int. J. Dev. Biol. 57, 357-364. https://doi.org/10.1387/ijdb.130051ji
- Silva, F.P., Hamamoto, R., Kunizaki, M., Tsuge, M., Nakamura, Y., and Furukawa, Y. (2008). Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells. Oncogene 27, 2686-2692. https://doi.org/10.1038/sj.onc.1210929
- Sims, R.J., and Reinberg, D. (2004). From chromatin to cancer: a new histone lysine methyltransferase enters the mix. Nat. Cell Biol. 6, 685-687. https://doi.org/10.1038/ncb0804-685
- Tao, Y., Neppl, R.L., Huang, Z.P., Chen, J., Tang, R.H., Cao, R., Zhang, Y., Jin, S.W., and Wang, D.Z. (2011). The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J. Cell Biol. 194, 551-565. https://doi.org/10.1083/jcb.201010090
- Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69. https://doi.org/10.1038/nprot.2007.514
- Van Aller, G.S., Reynoird, N., Barbash, O., Huddleston, M., Liu, S., Zmoos, A.F., McDevitt, P., Sinnamon, R., Le, B., Mas, G., et al. (2012). Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340-343. https://doi.org/10.4161/epi.19506
- Wamstad, J.A., Alexander, J.M., Truty, R.M., Shrikumar, A., Li, F., Eilertson, K.E., Ding, H., Wylie, J.N., Pico, A.R., Capra, J.A., et al. (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206-220. https://doi.org/10.1016/j.cell.2012.07.035
- Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Borchers, C., Tempst, P., and Zhang, Y. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207-1217. https://doi.org/10.1016/S1097-2765(01)00405-1
- Wang, Q.T. (2012). Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev. Dyn. 241, 1021-1033. https://doi.org/10.1002/dvdy.23796
- Westerfield, M. (1993). The Zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio). (Eugene, USA: University of Oregon Press).
- Yang, J., Huang, J., Dasgupta, M., Sears, N., Miyagi, M., Wang, B., Chance, M.R., Chen, X., Du, Y., Wang, Y., et al. (2010). Reversible methylation of promoter-bound STAT3 by histonemodifying enzymes. Proc. Natl. Acad. Sci. USA 107, 21499-21504. https://doi.org/10.1073/pnas.1016147107
Cited by
- Spatiotemporal expression pattern of the zebrafish aquaporin 8 family during early developmental stages vol.21, pp.1, 2016, https://doi.org/10.1016/j.gep.2016.06.001
- Transcriptional Regulation of Heart Development in Zebrafish vol.3, pp.2, 2016, https://doi.org/10.3390/jcdd3020014
- The histone methyltransferase Setd7 promotes pancreatic progenitor identity vol.143, pp.19, 2016, https://doi.org/10.1242/dev.136226
- Histone lysine methylation and congenital heart disease: From bench to bedside (Review) vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3115
- Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search vol.23, pp.3, 2018, https://doi.org/10.3390/molecules23030567
- NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2 pp.15821838, 2019, https://doi.org/10.1111/jcmm.13961
- Role of epigenetics in zebrafish development vol.718, pp.None, 2015, https://doi.org/10.1016/j.gene.2019.144049
- Loss of the Polycomb group protein Rnf2 results in derepression of tbx -transcription factors and defects in embryonic and cardiac development vol.9, pp.None, 2015, https://doi.org/10.1038/s41598-019-40867-1
- Roles and regulation of histone methylation in animal development vol.20, pp.10, 2015, https://doi.org/10.1038/s41580-019-0151-1
- The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-53577-5
- Histones, Their Variants and Post-translational Modifications in Zebrafish Development vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00456
- Cisplatin nephrotoxicity is induced via poly(ADP-ribose) polymerase activation in adult zebrafish and mice vol.318, pp.5, 2015, https://doi.org/10.1152/ajpregu.00130.2019
- The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development vol.10, pp.5, 2015, https://doi.org/10.3390/cells10051233