• 제목/요약/키워드: histone gene

검색결과 233건 처리시간 0.022초

The Fission Yeast Hda1p Functions on the Regulation of Proper Cell Division

  • Hwang, Hyung-Seo;Suh, Na-Young;Song, Ki-Won
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.263-267
    • /
    • 2000
  • We cloned $hda1^+$ (histone deacetylase 1) of fission yeast Schizosaccharomyces pombe. The hda1 of S. pombe was previously reported to encode for an active histone deacetylase (Rundlett et al., 1996; Olsson et al., 1998). The $hda1^+$ is phylogenetically related to the new open reading frame HOS2 of Saccharomyces cerevisiae and only shows a partial homology to the well-known histone deacetylase subclasses, RPD3 and HDA1. A single hda1 mRNA of 1.8 kb was detected at the same level in actively growing and nitrogen-starved cells. When highly over-expressed in S. pombe from an inducible promoter, $hda1^+$ inhibited cell proliferation and caused defects in morphology and cell division. The increased histone deacetylase activity was detected in hdar over-expressing cells. These results suggest that the Hda1p should function on the regulation of cell division possibly by (Allfrey, 1966) direct deacetylation of cytoskeletal (Wade et al., 1997) and cell division regulatory proteins, (Wolffe, 1997) or by controlling their gene expressions.

  • PDF

Fine-tuning of gene expression dynamics by the Set2-Rpd3S pathway

  • Lee, Bo Bae;Kim, Ji Hyun;Kim, TaeSoo
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.162-163
    • /
    • 2017
  • RNA polymerase II-interacting the Set2 methyltransferase co-transcriptionally methylates histone H3 at lysine 36 within the body of genes. This modification facilitates histone deacetylation by Rpd3S HDAC in 3' transcribed regions to suppress cryptic initiation and slow elongation. Although this pathway is important for global deacetylation, no strong effects have been seen on genome-wide transcription under optimized laboratory conditions. In contrast, this pathway slows the kinetics of mRNA induction when target genes are induced upon environmental changes. Interestingly, a majority of Set2-repressed genes are overlapped by a lncRNA transcription that targets H3K36 methylation and deacetylation by Rpd3S HDAC to mRNA promoters. Furthermore, this pathway delays the induction of many cryptic transcripts upon environmental changes. Therefore, the Set2-Rpd3S HDAC pathway functions to fine-tune expression dynamics of mRNAs and ncRNAs.

Epigenetic Silencing of CHOP Expression by the Histone Methyltransferase EHMT1 Regulates Apoptosis in Colorectal Cancer Cells

  • Kim, Kwangho;Ryu, Tae Young;Lee, Jinkwon;Son, Mi-Young;Kim, Dae-Soo;Kim, Sang Kyum;Cho, Hyun-Soo
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.622-630
    • /
    • 2022
  • Colorectal cancer (CRC) has a high mortality rate among cancers worldwide. To reduce this mortality rate, chemotherapy (5-fluorouracil, oxaliplatin, and irinotecan) or targeted therapy (bevacizumab, cetuximab, and panitumumab) has been used to treat CRC. However, due to various side effects and poor responses to CRC treatment, novel therapeutic targets for drug development are needed. In this study, we identified the overexpression of EHMT1 in CRC using RNA sequencing (RNA-seq) data derived from TCGA, and we observed that knocking down EHMT1 expression suppressed cell growth by inducing cell apoptosis in CRC cell lines. In Gene Ontology (GO) term analysis using RNA-seq data, apoptosis-related terms were enriched after EHMT1 knockdown. Moreover, we identified the CHOP gene as a direct target of EHMT1 using a ChIP (chromatin immunoprecipitation) assay with an anti-histone 3 lysine 9 dimethylation (H3K9me2) antibody. Finally, after cotransfection with siEHMT1 and siCHOP, we again confirmed that CHOP-mediated cell apoptosis was induced by EHMT1 knockdown. Our findings reveal that EHMT1 plays a key role in regulating CRC cell apoptosis, suggesting that EHMT1 may be a therapeutic target for the development of cancer inhibitors.

F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향 (Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells)

  • 민혜현;김명희
    • 생명과학회지
    • /
    • 제25권6호
    • /
    • pp.703-708
    • /
    • 2015
  • Hox 유전자는 호메오도메인을 포함한 전사인자로써, 발생 과정 중 전후축을 따라 몸의 형태 형성을 조절하는 역할을 한다. 레티노산(RA)은 발생 과정에서 필수적인 형태형성인자이며 세포의 특성을 결정하는데 중요한 조절자이다. 특히, RA는 생쥐나 인간으로부터 만들어진 배아암종(EC)세포에서 Hox 유전자의 발현을 조절한다고 밝혀져 있다. 또한 RA에 의한 세포 분화와 유전자 조절 과정에 히스톤 변이가 중요한 역할을 하는 것으로 보고되어 있다. 히스톤 변이가 RA에 의해 유도되는 Hox 유전자의 발현에 특이적인 역할을 할 것으로 유추되기 때문에, 이 연구의 목적은 F9 생쥐배아 기형암종세포에서 RA에 의해 유도되는 Hoxc 유전자의 순차적인 발현이 히스톤 변이에 의해 일어나는 것인지를 조사하는 것이다. Hox 유전자의 발현 양상과 히스톤 변이는 semi-quantitative RT-PCR, RNA-sequencing과 chromatin immuno-precipitation (ChIP)-PCR 기법을 이용하여 관찰하였다. RA 처리 후(0일(D0), 1일(D1), 3일(D3)), Hoxc4 유전자의 발현(D1)은 Hoxc5부터 –c10 유전자(D3)보다 먼저 시작되었다. Hox가 발현하지 않는 D0 샘플은 전사 억제 마커인 H3K27me3이 모든 Hoxc 좌위에 강하게 표지 되어 있었으나 D1과 D3 샘플에서는 모든 좌위의 H3K27me3 표지가 확연히 줄어들어 있었다. 전사 발현 마커인 H3K4me3가 Hoxc 유전자의 순차적인 발현과 더 연관성이 있는 것으로 보이는데 D1에서 Hoxc4 발현과 함께 H3K4me3이 표지 되어 있었고, D3에서는 Hoxc 유전자 발현과 함께 모든 좌위에서 H3K4me3 마커가 존재했기 때문이다. 모든 결과를 종합해 보았을 때 F9 세포에서 RA에 의해 유도된 Hoxc 유전자의 순차적인 발현은 Hoxc 좌위에서 H3K27me3가 사라지고, H3K4me3가 표지 되는 히스톤 메틸화의 변이에 의해 결정되는 것으로 사료된다.

Comparison of Expression Signature of Histone Deacetylases (HDACs) in Mesenchymal Stem Cells from Multiple Myeloma and Normal Donors

  • Ahmadvand, Mohammad;Noruzinia, Mehrdad;Soleimani, Masoud;Abroun, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3605-3610
    • /
    • 2016
  • Background: Histone acetylation in chromatin structures plays a key role in regulation of gene transcription and is strictly controlled by histone acetyltransferase (HAT) and deacetylase (HDAC) activities. HDAC deregulation has been reported in several cancers. Materials and Methods: The expression of 10 HDACs (including HDAC class I and II) was studied by quantitative reverse transcription-PCR (qRT-PCR) in a cohort of mesenchymal stem cells (MM-MSCs) from 10 multiple myeloma patients with a median age 60y. The results were compared with those obtained for normal donors. Then, a coculture system was performed between MM-MSCs and u266 cell line, in the presence or absence of sodium butyrate (NaBT), to understand the effects of HDAC inhibitors (HDACi) in MM-MSCs on multiple myeloma cases. Also, the interleukin-6 (IL-6) and vascular endothelial growth factor (VEGFA) gene expression level and apoptotic effects were investigated in MM-MSCs patients and control group following NaBT treatment. Results: The results indicated that upregulated (HDACs) and downregulated (IL6 and VEGFA) genes were differentially expressed in the MM-MSCs derived from patients with multiple myeloma and ND-MSCs from normal donors. Comparison of the MM-MSCs and ND-MSCs also showed distinct HDACs expression patterns. For the first time to our knowledge, a significant increase of apoptosis was observed in coculture with MM-MSCs treated with NaBT. Conclusions: The obtained findings elucidate a complex set of actions in MSCs in response to HDAC inhibitors, which may be responsible for anticancer effects. Also, the data support the idea that MSCs are new therapeutic targets as a potential effective strategy for MM.

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.98-116
    • /
    • 2024
  • Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Regulation of Histone Acetylation during First Mitosis in Bovine Clone Embryos

  • Gabbine Wee;Koo, Deog-Bon;Kang, Man-Jong;Moon, Seung-Ju;Lee, Kyung-Kwang;Han, Yong-Mahn
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2004년도 춘계학술발표대회
    • /
    • pp.189-189
    • /
    • 2004
  • Histone acetylation as epigenetic marker plays a critical role in gene expression through the interaction of nucleosomes with DNA, modulating the efficiency which RNA-polymerase can interact with promotors to initiate transcription. After fertilization, highly acetylated chromatin takes place and maintain during 1cell stages. The hyperacetylation may lead minor genome activation for survival and cleavage, and then may affect embryonic genome activation and development to balstocyst. (omitted)

  • PDF

New Hdac Inhibitor, In2001 Induces Apoptosis/Cell Cycle Arrest in the Human Breast Cancer Cells

  • Min, Kyung-Nan;Joung, Ki-Eun;Cho, Min-jung;Kim, Dae-Ki;Sheen, Yhun-Yhong
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.168-168
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis.(omitted)

  • PDF

Development of radiolabelled histone deacetylase inhibitors for PET imaging study

  • Hee-Kwon Kim
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.165-170
    • /
    • 2020
  • Histone Deacetylases (HDACs) are enzymes that have control gene expression regulation and cell state. In additions, inhibitions of HDACs are associated with growth arrest, differentiation, or apoptosis of tumor cell. Thus HDAC inhibition is one of the interesting biological targets. A variety of HDAC inhibitors has been developed by many scientists, and some of chemical structures related with HDAC inhibitors were modified to give radiolabeled HDAC inhibitors for positron emission tomography (PET) study. In this highlight review, the development of radiolabeled HDAC inhibitors for PET study are described.