• 제목/요약/키워드: histone gene

검색결과 233건 처리시간 0.03초

히스톤 메틸화와 유전자 전사 (Histone methylation and transcription)

  • 김애리
    • 생명과학회지
    • /
    • 제17권4호
    • /
    • pp.593-598
    • /
    • 2007
  • Amino acids of histone tail are covalently modified in eukaryotic cells. Lysine residues in histone H3 and H4 are methylated at three levels; mono-, di- or trimethylation. Methylation in histones is related with transcription of the genes in distinct pattern depending on lysine residues and methylated levels. Relation between transcription and methylation has been relatively well understood at three lysines H3K4, H3K9 and H3K36. H3K4 is methylated in active or potentially active chromatin and its methylation associates with active transcription. H3K9 is generally methylated in heterochromatin or repressed gene, but trimethylation of this lysine occur in actively transcribed genes also. Methylation at H3K36 generally correlates with active chromatin/transcription, but the correlation of its dimethylation with transcription is controversial. All together methylation patterns of individual lysine residues in histone relate with activation or repression of transcription and may provide distinctive roles in transcriptional regulation of the eukaryotic genes.

Histone deacetylase family in balloon flower (Platycodon grandiflorus): Genome-wide identification and expression analysis under waterlogging stress

  • Min-A Ahn;Ga Hyeon Son;Tae Kyung Hyun
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.232-238
    • /
    • 2023
  • Histone deacetylases (HDACs) play a pivotal role in epigenetic regulation, affecting the structure of chromatin and gene expression across different stages of plant development and in response to environmental stresses. Although the role of HDACs in Arabidopsis and rice has been focused on in extensive research, the role of the HDAC gene family in various medicinal plants remains unclear. In the genome of the balloon flower (Platycodon grandiflorus), we identified 10 putative P. grandiflorus HDAC (PlgHDAC) proteins, which were classified into the three families (RPD3/HDA1, SIR2, and HD2 HDAC families) based on their domain compositions. These HDACs were predicted to be localized in various cellular compartments, indicating that they have diverse functions. In addition, the tissue-specific expression profiles of PlgHDACs differed across different plant tissues, indicating that they are involved in various developmental processes. Furthermore, the expression levels of all PlgHDACs were upregulated in leaves after waterlogging treatment, implying their potential role in coping with waterlogging-induced stress. Overall, our findings provide a comprehensive foundation for further research into the epigenetic regulation of PlgHDACs, and particularly, on their functions in response to environmental stresses such as waterlogging. Understanding the roles of these HDACs in the development and stress responses of balloon flower could have significant implications for improving crop yield and the quality of this important medicinal plant.

Cloning and Characterization of the Catalytic Subunit of Human Histone Acetyltransferase, Hat1

  • Chung, Hyo-Young;Suh, Na-Young;Yoon, Jong-Bok
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.484-491
    • /
    • 1998
  • Acetylation of lysine residues within the aminoterminal domains of the core histones plays a critical role in chromatin assemhly as well as in regulation of gene expression. To study the biochemical function of histone acetylation, we have cloned a cDNA encoding the catalytic subunit of human histone acetyltransferase, Hat1. Analysis of the predicted amino acid sequence of human Hat1 revealed an open reading frame of 419 amino acids with a calculated molecular mass of 49.5 kDa and an isoelectric point of 5.5. The amino acid sequence of human Hat1 is homologous to those of known and putative Hat1 proteins from various species throughout the entire open reading frame. The recombinant human Hat1 protein expressed in bacteria possesses histone H4 acetyltransferase activity in vitro. Both RbAp46 and RbAp48, which participate in various processes of histone metabolism, enhance the histone acetyltransferase activity of the recombinant human Hat1, indicating that they are both able to functionally interact with the human Hat1 in vitro.

  • PDF

Influence of Toxicologically Relevant Metals on Human Epigenetic Regulation

  • Ryu, Hyun-Wook;Lee, Dong Hoon;Won, Hye-Rim;Kim, Kyeong Hwan;Seong, Yun Jeong;Kwon, So Hee
    • Toxicological Research
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2015
  • Environmental toxicants such as toxic metals can alter epigenetic regulatory features such as DNA methylation, histone modification, and non-coding RNA expression. Heavy metals influence gene expression by epigenetic mechanisms and by directly binding to various metal response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. Here, we focus on recent advances in understanding epigenetic changes, gene expression, and biological effects induced by toxic metals.

Histone deacetylase inhibitor Trichostatin A enhanced the efficiency of adenovirus mediated gene transfer into non-small cell lung cancer cells

  • Park, Mi-Sun;Kang, Ho-Il;Lim, Sin-Ae;Jee, Seung-Wan;Eom, Mi-Ok;Ryeom, Tai-Kyung;Kim, Ok-Hee
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.99.2-99.2
    • /
    • 2003
  • One of the major limitations in using adenoviral vector for gene therapy is inefficient infection of host cells. The presence of coxsackievirus and adenovirus receptor (CAR) and ${\alpha}$-integrin on cell surfaces is required for efficient adenovirus infection. In this study, we investigated the effect of trichostatin A, a histone deacetylase inhibitor, on transfection efficiency after transduction of adenovirus mediated p16$\^$INK4a/ gene transfer. In our previous study, p16$\^$INK4a/ tumor suppressor gene transfer in the non-small cell lung cancer cells (A549 cells) by transduction of recombinant adenovirus (Ad5CMV-p16) resulted in significant inhibition of cancer cell proliferation. (omitted)

  • PDF

Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens

  • Shahjahan, Md.;Liu, Ranran;Zhao, Guiping;Wang, Fangjie;Zheng, Maiqing;Zhang, Jingjing;Song, Jiao;Wen, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권4호
    • /
    • pp.479-486
    • /
    • 2016
  • A previous genome-wide association study (GWAS) exposed histone deacetylase 2 (HDAC2) as a possible candidate gene for breast muscle weight in chickens. The present research has examined the possible role of HDAC2 in skeletal muscle development in chickens. Gene expression was measured by quantitative polymerase chain reaction in breast and thigh muscles during both embryonic (four ages) and post-hatch (five ages) development and in cultures of primary myoblasts during both proliferation and differentiation. The expression of HDAC2 increased significantly across embryonic days (ED) in breast (ED 14, 16, 18, and 21) and thigh (ED 14 and 18, and ED 14 and 21) muscles suggesting that it possibly plays a role in myoblast hyperplasia in both breast and thigh muscles. Transcript abundance of HDAC2 identified significantly higher in fast growing muscle than slow growing in chickens at d 90 of age. Expression of HDAC2 during myoblast proliferation in vitro declined between 24 h and 48 h when expression of the marker gene paired box 7 (PAX7) increased and cell numbers increased throughout 72 h of culture. During induced differentiation of myoblasts to myotubes, the abundance of HDAC2 and the marker gene myogenic differentiation 1 (MYOD1), both increased significantly. Taken together, it is suggested that HDAC2 is most likely involved in a suppressive fashion in myoblast proliferation and may play a positive role in myoblast differentiation. The present results confirm the suggestion that HDAC2 is a functional gene for pre-hatch and post-hatch (fast growing muscle) development of chicken skeletal muscle.

A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus

  • Kim, Taehyun;Lee, Song Hee;Oh, Young Taek;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.314-322
    • /
    • 2020
  • Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of MoHDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Wound-inoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.

박테리아의 히스톤 유사 단백질에 의한 유전자 발현 조절 (Regulation of gene expression by histone-like proteins in bacteria)

  • 박신애;이정신
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.1-8
    • /
    • 2018
  • 원핵 세포는 핵양체 결합 단백질(NAP)로 알려진 다양한 히스톤 유사 단백질을 가지고 있다. 이들은 DNA의 AT-rich 서열에 결합하여, DNA 자체를 감싸거나, 구부리거나, 떨어져 있는 DNA 가닥을 연결시키는 다리 역할을 하여, 결국에는 원핵 생물의 유전자 발현을 조절한다. NAP는 특히 전사의 억제 기능을 가지고 있기 때문에, 유전자 발현 억제에 있어서 이들의 역할과, 구체적인 메커니즘을 밝히는 것을 매우 중요한 일이다. 본 논문에서는 잘 알려져 있는 NAP인 H-NS와 HU에 대하여 정리하였고, 특히 E. coli와 Salmonella Typhimurium에서 이들의 유전자 발현에 대한 기능을 요약하였다. H-NS는 이들의 올리고머화와 필라멘트 구조 형성을 통하여 Salmonella와 같은 사람에 감염하는 병원성 세균의 독성유전자 발현을 억제할 수 있고, 이런 기능을 수행하였을 때 다른 NAP와 함께 작용할 수 있다. 최근에 H-NS는 사람에게 typhoid fever와 systemic disease를 발생시키는 독성물질인, typhoid toxin의 발현 또한 조절할 수 있음이 밝혀졌다. Salmonella에서 HU 또한 독성 유전자뿐만 아니라, 이들의 생리적 기능에 중요한 유전자들의 발현을 조절할 수 있다. 따라서, H-NS와 HU와 같은 NAP들이 원핵 생물의 독성 유전자 발현의 분자적인 메커니즘을 밝히는데 중요한 요소임을 제시한다.

Identification of small molecules that inhibit the histone chaperone Asf1 and its chromatin function

  • Seol, Ja-Hwan;Song, Tae-Yang;Oh, Se Eun;Jo, Chanhee;Choi, Ahreum;Kim, Byungho;Park, Jinyoung;Hong, Suji;Song, Ilrang;Jung, Kwan Young;Yang, Jae-Hyun;Park, Hwangseo;Ahn, Jin-Hyun;Han, Jeung-Whan;Cho, Eun-Jung
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.685-690
    • /
    • 2015
  • The eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3. To elucidate the role of Asf1 in the modulation of chromatin structure, we screened and identified small molecules that inhibit Asf1 and H3K56 acetylation without affecting other histone modifications. These pyrimidine-2,4,6-trione derivative molecules inhibited the nucleosome assembly mediated by Asf1 in vitro, and reduced the H3K56 acetylation in HeLa cells. Furthermore, production of HSV viral particles was reduced by these compounds. As Asf1 is implicated in genome integrity, cell proliferation, and cancer, current Asf1 inhibitor molecules may offer an opportunity for the therapeutic development for treatment of diseases.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.