• Title/Summary/Keyword: histogram segmentation

Search Result 206, Processing Time 0.024 seconds

A Content-Based Image Retrieval using Object Segmentation Method (물체 분할 기법을 이용한 내용기반 영상 검색)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various methods have been studying to maintain and apply the multimedia inform abruptly increasing over all social fields, in recent years. For retrieval of still images, we is implemented content-based image retrieval system in this paper that make possible to retrieve similar objects from image database after segmenting query object from background if user request query. Query image is processed median filtering to remove noise first and then object edge is detected it by canny edge detection. And query object is segmented from background by using convex hull. Similarity value can be obtained by means of histogram intersection with database image after securing color histogram from segmented image. Also segmented image is processed gray convert and wavelet transform to extract spacial gray distribution and texture feature. After that, Similarity value can be obtained by means of banded autocorrelogram and energy. Final similar image can be retrieved by adding upper similarity values that it make possible to not only robust in background but also better correct object retrieval by using object segmentation method.

  • PDF

Key Frame Extraction and Region Segmentation-based Video Retrieval in Compressed Domain (압축영역에서의 대표프레임 추출 및 영역분할기반 비디오 검색 기법)

  • 강응관;김성주;송호근;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1713-1720
    • /
    • 1999
  • This paper presents a new key frame extraction technique, for scene change detection, using the proposed AHIM (Accumulative Histogram Intersection Measure) from the DC image constructed by DCT DC coefficients in the compressed video sequence that is video compression standard such as MPEG. For fast content-based browsing and video retrieval in a video database, we also provide a novel coarse-to-fine video indexing scheme. In the extracted key frame, we perform the region segmentation as a preprocessing. First, the segmented image is projected with the horizontal direction, then we transform the result into a histogram, which is saved as a database index. In the second step, we calculate the moments and change them into a distance value. From the simulation results, the proposed method clearly shows the validity and superiority in respect of computation time and memory space, and that in conjunction with other techniques for indexing, such as color, can provide a powerful framework for image indexing and retrieval.

  • PDF

Vehicle Detection Scheme Based on a Boosting Classifier with Histogram of Oriented Gradient (HOG) Features and Image Segmentation] (HOG 특징 및 영상분할을 이용한 부스팅분류 기반 자동차 검출 기법)

  • Choi, Mi-Soon;Lee, Jeong-Hwan;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.955-961
    • /
    • 2010
  • In this paper, we describe a study of a vehicle detection method based on a Boosting Classifier which uses Histogram of Oriented Gradient (HOG) features and Image Segmentation techniques. An input image is segmented by means of a split and merge algorithm. Then, the two largest segmented regions are removed in order to reduce the search region and speed up processing time. The HOG features are then calculated for each pixel in the search region. In order to detect the vehicle region we used the AdaBoost (adaptive boost) method, which is well known for classifying samples with two classes. To evaluate the performance of the proposed method, 537 training images were used to train and learn the classifier, followed by 500 non-training images to provide the recognition rate. From these experiments we were able to detect the proper image 98.34% of the time for the 500 non-training images. In conclusion, the proposed method can be used for detecting the location of a vehicle in an intelligent vehicle control system.

Scene Change Detection Using Local $x-^{2}-Test$ (지역적 $x-^{2}$-테스트를 이용한 장면전환검출 기법)

  • Kim, Yeong-Rye;Rhee, Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • This paper presents a method that allows for detection of all rapid and gradual scene changes. The method features a combination of the current color histogram and the local $X^{2}-test$. For the purpose of this paper, the $X^{2}-test$ scheme outperforming existing histogram-based algorithms was transformed, and a local $X^{2}-test$ in which weights were applied in accordance with the degree of brightness was used to increase detection efficiency in the segmentation of color values. This Method allows for analysis and segmentation of complex time-varying images in the most general and standardized manner possible Experiments were performed to compare the proposed local $X^{2}-test$ method with the current $X^{2}-test$ method.

  • PDF

Application of Bimodal Histogram Method to Oil Spill Detection from a Satellite Synthetic Aperture Radar Image

  • Kim, Tae-Sung;Park, Kyung-Ae;Lee, Min-Sun;Park, Jae-Jin;Hong, Sungwook;Kim, Kum-Lan;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.645-655
    • /
    • 2013
  • As one of segmentation techniques for Synthetic Aperture Radar (SAR) image with oil spill, we applied a bimodal histogram method to discriminate oil pixels from non-oil pixels. The threshold of each moving window was objectively determined using the two peaks in the histogram distribution of backscattering coefficients from ENVISAT ASAR image. To reduce the effect of wind speed on oil spill detection, we selected ASAR image which satisfied a limit of wind speeds for successful detection. Overall, a commonly used adaptive threshold method has been applied with a subjectively-determined single threshold. In contrast, the bimodal histogram method utilized herein produces a variety of thresholds objectively for each moving window by considering the characteristics of statistical distribution of backscattering coefficients. Comparison between the two methods revealed that the bimodal histogram method exhibited no significant difference in terms of performance when compared to the adaptive threshold method, except for around the edges of dark oil spots. Thus, we anticipate that the objective method based on the bimodality of oil slicks may also be applicable to the detection of oil spills from other SAR imagery.

Decision of Gaussian Function Threshold for Image Segmentation (영상분할을 위한 혼합 가우시안 함수 임계 값 결정)

  • Jung, Yong-Gyu;Choi, Gyoo-Seok;Heo, Go-Eun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.163-168
    • /
    • 2009
  • Most image segmentation methods are to represent observed feature vectors at each pixel, which are assumed as appropriated probability models. These models can be used by statistical estimating or likelihood clustering algorithms of feature vectors. EM algorithms have some calculation problems of maximum likelihood for unknown parameters from incomplete data and maximum value in post probability distribution. First, the performance is dependent upon starting positions and likelihood functions are converged on local maximum values. To solve these problems, we mixed the Gausian function and histogram at all the level values at the image, which are proposed most suitable image segmentation methods. This proposed algoritms are confirmed to classify most edges clearly and variously, which are implemented to MFC programs.

  • PDF

Intensity Correction of 3D Stereoscopic Images Using Binarization-Based Region Segmentation (이진화기반 영역분할을 이용한 3D입체영상의 밝기보정)

  • Kim, Sang-Hyun;Kim, Jeong-Yeop
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.265-270
    • /
    • 2011
  • In this paper, we propose a method for intensity correction using binarization-based region segmentation in 3D stereoscopic images. In the proposed method, 3D stereoscopic right image is segmented using binarizarion. Small regions in the segmented image are eliminated. For each region in right image, a corresponding region in left image is decided through region matching using correlation coefficient. When region-based matching, in order to prevent overlap between regions, we remove a portion of the area closed to the region boundary using morphological filter. The intensity correction in left and right image can be performed through histogram specification between the corresponding regions. Simulation results show the proposed method has the smallest matching error than the conventional method when we generate the right image from the left image using block based motion compensation.

Segmentation and Contents Classification of Document Images Using Local Entropy and Texture-based PCA Algorithm (지역적 엔트로피와 텍스처의 주성분 분석을 이용한 문서영상의 분할 및 구성요소 분류)

  • Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.377-384
    • /
    • 2009
  • A new algorithm in order to classify various contents in the image documents, such as text, figure, graph, table, etc. is proposed in this paper by classifying contents using texture-based PCA, and by segmenting document images using local entropy-based histogram. Local entropy and histogram made the binarization of image document not only robust to various transformation and noise, but also easy and less time-consuming. And texture-based PCA algorithm for each segmented region was taken notice of each content in the image documents having different texture information. Through this, it was not necessary to establish any pre-defined structural information, and advantages were found from the fact of fast and efficient classification. The result demonstrated that the proposed method had shown better performances of segmentation and classification for various images, and is also found superior to previous methods by its efficiency.

A Study on Game Contents Classification Service Method using Image Region Segmentation (칼라 영상 객체 분할을 이용한 게임 콘텐츠 분류 서비스 방안에 관한 연구)

  • Park, Chang Min
    • Journal of Service Research and Studies
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 2015
  • Recently, Classification of characters in a 3D FPS game has emerged as a very significant issue. In this study, We propose the game character Classification method using Image Region Segmentation of the extracting meaningful object in a simple operation. In this method, first used a non-linear RGB color model and octree color quantization scheme. The input image represented a less than 20 quantized color and uses a small number of meaningful color histogram. And then, the image divided into small blocks, calculate the degree of similarity between the color histogram intersection and adjacent block in block units. Because, except for the block boundary according to the texture and to extract only the boundaries of the object block. Set a region by these boundary blocks as a game object and can be used for FPS game play. Through experiment, we obtain accuracy of more than 80% for Classification method using each feature. Thus, using this property, characters could be classified effectively and it draws the game more speed and strategic actions as a result.

Pothole Detection using Intensity and Motion Information (명암과 움직임 정보를 이용한 포트홀 검출)

  • Kim, Young-Ro;Jo, Youngtae;Ryu, Seungki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.137-146
    • /
    • 2015
  • In this paper, we propose a pothole detection method using various features of intensity and motion. Segmentation, decision steps of pothole detection are processed according to the values which are derived from feature characteristics. For segmentation using intensity, we use a binarization method using histogram to separate pothole region from background. For segmentation using motion, we filter using high pass filter and get standard deviation value. This value is divided by regression value according to camera environment such as photographing angle, height, velocity, etc. We get binary image by histogram based binarization. For decision, candidate regions are decided whether pothole or not using comparison of candidate and background's features. Experimental results show that our proposed pothole detection method has better results than existing methods and good performance in discrimination between pothole and similar patterns.