• Title/Summary/Keyword: higher-order nonlinear

Search Result 377, Processing Time 0.024 seconds

Nonlinear Modeling of Super-RENS System Using a Neural Networks (신경망을 이용한 Super-RENS 시스템의 비선형 모델링)

  • Seo, Man-Jung;Im, Sung-Bin;Lee, Jae-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.53-60
    • /
    • 2008
  • Recently, various recording technologies are studied for optical data storage. After standardization of BD (Blue-ray Disc) and HD-DVD (High-Definition Digital Versatile Disc), the industry is looking for a suitable technology for next generation optical data storage. Super-RENS (Super-resolution near field structure) technique, which is capable of compatibility with other systems, is one of next optical data storage. In this paper, we analyze the nonlinearity of Super-RENS read-out signal through the bicoherence test, which uses HOS (Higher-Order Statistics) and apply neural networks for nonlinear modeling. The model structure considered in this paper is the NARX (Nonlinear AutoRegressive eXogenous) model. The experiment results indicate that the read-out signals have nonlinear characteristics. In addition, it verified the possibility that neural networks can be utilized for nonlinear modeling of Super-RENS systems.

On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells

  • Mirjavadi, Sayed Sajad;Bayani, Hassan;Khoshtinat, Navid;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.631-640
    • /
    • 2020
  • In this paper, nonlinear vibration behaviors of multi-phase Magneto-Electro-Elastic (MEE) doubly-curved nanoshells have been studied employing Jacobi elliptic function method. The doubly-curved nanoshell has been modeled by using nonlocal elasticity and classic shell theory. An exact estimation of nonlinear vibrational behavior of smart doubly-curved nanoshell has been obtained via Jacobi elliptic function method. This method can incorporate the influences of higher order harmonics leading to an exact estimation of nonlinear vibration frequency. It will be indicated that nonlinear vibrational frequency of doubly-curved nanoshell relies on nonlocal effect, material composition, curvature radius, center deflection and electro-magnetic field.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.221-228
    • /
    • 2013
  • The method of upper and lower solutions and the generalized quasilinearization technique is developed for the existence and approximation of solutions to boundary value problems for higher order fractional differential equations of the type $^c\mathcal{D}^qu(t)+f(t,u(t))=0$, $t{\in}(0,1),q{\in}(n-1,n],n{\geq}2$ $u^{\prime}(0)=0,u^{\prime\prime}(0)=0,{\ldots},u^{n-1}(0)=0,u(1)={\xi}u({\eta})$, where ${\xi},{\eta}{\in}(0,1)$, the nonlinear function f is assumed to be continuous and $^c\mathcal{D}^q$ is the fractional derivative in the sense of Caputo. Existence of solution is established via the upper and lower solutions method and approximation of solutions uses the generalized quasilinearization technique.

OPTIMALITY CRITERIA AND DUALITY FOR MULTIOBJECTIVE VARIATIONAL PROBLEMS INVOLVING HIGHER ORDER DERIVATIVES

  • Husain, I.;Ahmed, A.;Rumana, G. Mattoo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.123-137
    • /
    • 2009
  • A multiobjective variational problem involving higher order derivatives is considered and Fritz-John and Karush-Kuhn-Tucker type optimality conditions for this problem are derived. As an application of Karush-Kuhn-Tucker optimality conditions, Wolfe type dual to this variational problem is constructed and various duality results are validated under generalized invexity. Some special cases are mentioned and it is also pointed out that our results can be considered as a dynamic generalization of the already existing results in nonlinear programming.

  • PDF

Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Khan, Imran
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.397-406
    • /
    • 2020
  • The present article deals with post-buckling of geometrically imperfect concrete plates reinforced by graphene oxide powder (GOP) based on general higher order plate model. GOP distributions are considered as uniform and linear models. Utilizing a shear deformable plate model having five field components, it is feasible to verify transverse shear impacts with no inclusion of correction factor. The nonlinear governing equations have been solved via an analytical trend for deriving post-buckling load-deflection relations of the GOP-reinforced plate. Derived findings demonstrate the significance of GOP distributions, geometric imperfectness, foundation factors, material compositions and geometrical factors on post-buckling properties of reinforced concrete plates.

Extended implicit integration process by utilizing nonlinear dynamics in finite element

  • Mohammadzadeh, Saeed;Ghassemieh, Mehdi;Park, Yeonho
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.495-504
    • /
    • 2017
  • This paper proposes a new direct numerical integration algorithm for solving equation of motion in structural dynamics problems with nonlinear stiffness. The new implicit method's degree of accuracy is higher than that of existing methods due to the higher order of the acceleration. Two parameters are defined, leading to a new family of unconditionally stable methods, which helps to take greater time steps in integration and eliminate concerns about the duration of solving. The method developed can be utilized for a number of solid plane finite elements, examples of which are given to compare the proposed method with existing ones. The results indicate the superiority of the proposed method.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Design of a direct multivariable neuro-generalised minimum variance self-tuning controller (직접 다변수 뉴로 일반화 최소분산 자기동조 제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.21-28
    • /
    • 2004
  • This paper presents a direct multivariable self-tuning controller using neural network which adapts to the changing parameters of the higher order multivariable nonlinear system with nonminimum phase behavior, mutual interactions and time delays. The nonlinearities are assumed to be globally bounded, and a multivariable nonlinear system is divided linear part and nonlinear part. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm the computer simulation is done to adapt the multivariable nonlinear nonminimm phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct multivariable adaptive controller using neural network.

A Practical Method for Identification of Nonlinear Chemical Processes by use of Volterra Kernel Model

  • Numata, Motoki;Kashiwagi, Hiroshi;Harada, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.145-148
    • /
    • 1999
  • It is known that Volterra kernel models can represent a wide variety of nonlinear chemical processes. Also, it is necessary for Volterra model identification to excite the process to be identified with a signal having wide range of frequency spectrum and high enough amplitude of input signals. Kashiwagi[4 ∼ 7] has recently shown a method for measuring Volterra kernels up to third order using pseudorandom M-sequence signals. However, in practice, since it is not always possible to apply such input sequences to the actual chemical plants. Even when we can apply such a pseudorandom signal to the process, it takes much time to obtain higher order Volterra kernels. Considering these problems, the authors propose here a new method for practical identification of Volterra kernels by use of approximate open differential equation (ODE) model and simple plant test. Simulation results are shown for verifying the usefulness of our method of identification of nonlinear chemical processes.

  • PDF

Real-Time Optimal Control for Nonlinear Dynamical Systems Based on Fuzzy Cell Mapping

  • Park, H.T.;Kim, H.D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.388-388
    • /
    • 2000
  • The complexity of nonlinear systems makes it difficult to ascertain their behavior using classical methods of analysis. Many efforts have been focused on the advanced algorithms and techniques that hold the promise of improving real-time optimal control while at the same time providing higher accuracy. In this paper, a fuzzy cell mapping method of real-time optimal control far nonlinear dynamical systems is proposed. This approach combines fuzzy logic with cell mapping techniques in order to find the optimal input level and optimal time interval in the finite set which change the state of a system to achieve a desired obiective. In order to illustrate this method, we analyze the behavior of an inverted pendulum using fuzzy cell mapping.

  • PDF