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Abstract

The complexity of nonlinear systems makes it difficult to ascertain
their behavior using classical methods of analysis. Many efforts
have been focused on the advanced algorithms and techniques that
hold the promise of improving real-time optimal control while at
the same time providing higher accuracy.

In this paper, a fuzzy cell mapping method of real-time optimal
control for nonlinear dynamical systems is proposed. This approach
combines fuzzy logic with cell mapping techniques in order to find
the optimal input level and optimal time interval in the finite set
which change the state of a system to achieve a desired objective.
In order to illustrate this method, we analyze the behavior of an
inverted pendulum using fuzzy cell mapping.

1. Introduction

The minimum-time and minimum-energy optimal control concepts
have been most naturally and frequently applied and extended to
various control engineering problems including many practical
aerospace applications. In addition, other control topics such as
fuzzy logic control and various nonlinear control theories has also
been developed and widely adopted. The rapid development of
microprocessors has allowed the real-time implementation of
optimal control concepts combined with other control concepts to
many different engineering systems.

Zadeh[1] introduced fuzzy logic during the late sixties and it has
also found many applications in engineering systems. Prior to
Zadeh, a number of authors had investigated three and multi-valued
logic systems. However, unlike these other systems which were
developed for a variety of reasons, fuzzy logic has been widely
accepted and has found many useful applications. The reason for
making mathematical programming fuzzy is to allow the model of
the object or evaluation to have ambiguity and to extract a solution
that seems to be good. Fuzzy logic has been very successful when
applied to nonlinear control systems. Most physical systems are
nonlinear. These systems are difficult to control with conventional
controllers. Fuzzy logic control systems have shown the capability
of handling system nonlinearities along with modeling uncertainties
and imprecision[2). The success that fuzzy logic has shown with
control systems and the nonlinear engineering world has motivated
us to look at using it to analyze and better understand optimum
control for nonlinear systems. More recently, many efforts have
been focused on the development and implementation of advanced
algorithms and techniques that hold the promise of improving
real-time optimal control{3] while at the same time providing
higher control accuracy.

Hsu[4] introduced the Simple Cell Mapping method(SCM) which
has been introduced not only for studying nonlinear dynamical
systems but for a new approach to optimum control problems.
These mappings generally provide a very good approximation to
the global behavior of the system although they may not be highly
accurate at the local level. The loss in accuracy results from the
need to associate the behavior of the cell with its center point. In
order to overcome the drawbacks associated with the SCM method
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we introduced the Fuzzy Cell Mapping (FCM) method[5].

Both SCM and FCM can be viewed as a Markov chain. However,
the FCM is different from SCM in that the SCM membership
function is crisp whereas the FCM membership function is fuzzy.
A Markov process is a special type of stochastic process
distinguished by a certain Markov property. The probability for a
future state given the present state is not changed by the
information concerning past states. A Markov chain is a type of
Markov process with a denumerable number of states. The time
parameter is taken to be the set of nonnegative integers or the set of
nonnegative real numbers. The mathematical theory of Markov
chains is well developed and can be directly applied to SCM or
FCM.

In this paper, we use FCM method to develop real-time optimal
control for nonlinear dynamical systems. The remainder of the
paper is divided into three sections. In section 2, we arrange fuzzy
cell mapping and membership function. In section 3, we use
a -cut of the membership function to work an example. We first
analyze the system using the SCM method and then, without
further numerical integrations, develop the transition possibility
matrix from the membership function. We then use this matrix to
analyze the system. In the last section, we summarize the results
and give our conclusions. In addition, we suggest future work in
this area that we believe is important.

2. Fuzzy Cell Mapping and Membership Function

Cell mapping analysis replaces integration by the simpler operation
of mapping. This requires converting the continuous state space
into a cell state space. There are many ways to build cells in a state
space. We will follow Hsu [8] and divide the state space into finite
cells of uniform size. Each cell will have a length h; along an axis x;.
The state variable x; can be divided into intervals such that

where z; is an integer. For our discussion the number of intervals
the x; axis is divided into is finite, say m, so that z=1,2,...,m;.

An N-tuple z;, i=1,2,...,N, is then called a cell vector and is denoted
by z. A point x(x;, i=1,2,...,N) belongs to a cell z(z;, i=1,2,...,N) if x;
belongs to z; for all i. The state space X can be considered as a
collection of cells, z(z1,z2,...,2n), which constitutes the cell state
space. In a cell state space, the source of the mapping is called an
original cell and the target of the mapping is called an image cell. In
FCM, the position variable x is the mapped location in the image
cell of the original cell's center point. A membership function
allocating grades of membership for X to the cells, Z,, in the image
cell's state space, can be defined for two dimension. Fig. 1 shows a
cell state space for two dimensions. The center point of the original
cell has been mapped to the cell z(j,k) and is shown as being a
distance d; and d; away from the center point of z(j,k) along the x,
and x; axis, respectively. We determine the membership value of
the mapped point in the image cell z(j,k), from the intersection of
the mapped cell, shown as dotted lines in Fig. 8, with the image cell.
The area, A,, intersecting the mapped cell and the image cell, z(j,k),
is



