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OPTIMALITY CRITERIA AND DUALITY FOR
MULTIOBJECTIVE VARIATIONAL PROBLEMS INVOLVING
HIGHER ORDER DERIVATIVES
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ABSTRACT. A multiobjective variational problem involving higher order
derivatives is considered and Fritz-John and Karush-Kuhn-Tucker type
optimality conditions for this problem are derived. As an application of
Karush-Kuhn-Tucker optimality conditions, Wolfe type dual to this vari-
ational problem is constructed and various duality results are validated
under generalized invexity. Some special cases are mentioned and it is also
pointed out that our results can be considered as a dynamic generalization
of the already existing results in nonlinear programming.
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1. Introduction

Calculus of variation is a powerful technique for the solution of various prob-
lems appearing in dynamics of rigid bodies, optimization of orbits, theory of
variations and many other fields. The subject whose importance is fast growing
in science and engineering primarily concern with finding optimal of a definite
integral involving a certain function subject to fixed point boundary conditions.
In [3] Courant and Hilbert, quoting an earlier work of Friedrichs [9], gave a
dual relationship for a simple type of unconstrained variational problem. Sub-
sequently, Hanson [11] pointed out that some of the duality results of math-
ematical programming have analogues in variational calculus. Exploring this
relationship between mathematical programming and the classical calculus of
variations, Mond and Hanson [13] formulated a constrained variational problem
as a mathematical programming problem and using Valentine’s [15] optimality
conditions for the same, presented its Wolfe type dual variational problem for
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validating various duality results under convexity. Later Bector, Chandra and
Husain [2] studied Mond-Weir type duality for the problem of [13] for weak-
ening its convexity requirement. In [5] Chandra, Craven and Husain studied
optimality and duality for a class of non-differentiable variational problem with
non-differentiable term in the integrand of the objective functional while in [4]
they derived optimality conditions and duality results for a constrained varia-
tional problem having terms with arbitrary norms in the objective as well as
constrained functions.

Recently Husain and Jabeen [10] studied a wider class of variational problem
in which the arc function is twice differentiable by extending the notion of in-
vexity given in {14]. They obtained Fritz John as well as Karush- Kuhn-Tucker
necessary optimality conditions as an application of Karush-Kuhn-Tucker opti-
mality conditions studied various duality results for Wolfe and Mond and Weir
type models.

In single objective programming we must settle on a single objective such
as minimizing cost or maximizing profit. However, generally any real world
problems can be identified with multiple conflicting criteria e.g., the problems of
oil refinery scheduling, production planning, portfolio selection and many others
can be modelled as multiobjective programming problems.

Duality results are very useful in the development of numerical algorithms
for solving certain classes of optimization problems. Duality for multiobjective
variational problem has been studied by a number of authors, notably Bector
and Husain [1}, Chen [7] and many others cited in these references. Applications
of duality theory are prominent in physics, economics, management sciences,
ete.

Since mathematical programming and classical calculus of variations have un-
dergone independent development, it is felt that mutual adaptation of ideas and
techniques may prove useful, Motivated with this idea in this exposition, we pro-
pose to study optimality criteria and duality for a wider class of multiobjective
variational problems involving higher order derivative. These results not only
generalize the results of Husain and Jabeen [10] and Bector and Husain [1] but
also present a dynamic generalization of some of the results in multiobjective
nonlinear programming already existing.

2. Invexity and generalized invexity

Invexity was introduced for functions in variational problems by Mond, Chan-
dra and Husain [14] while Mond and Smart [12] defined invexity for functionals
instead of functions. Here we introduce extended forms of definitions of invexity
and various generalized invexity for functional in variational problems involving
higher order derivatives.

Consider the real interval I = [a, b], and the continuously differentiable func-
tion ¢ : I x B™ x R* x R* — R, where z is twice differentiable with its first
and second order derivatives & and # respectively. If z = (2%, z2,...,2™)7, the
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gradient vectors of f with respect to z, £ and # respectively denoted by

. T . T T
TS CRPRTT S L S 11

M"“,M 5;, ,a—xg 5;,,5;,;
Definition 1 (Invexity). If there exists vector function n(t, %, 4,z,%,%) € R"
withn =0 and z(t) = u(t), t € I and Dn = 0 for &{t) = u(t), t € I such that for
a scalar function ¢(t, z, &, &), the functional ®(z, z, &) = [, ¢(t, z, &, ¥)dt satisfies
O(z, 4, &) — (x, &, %)

2 /{nTém(t’ z, T, :U) + (DU)T%(L z,Z, 58) + (D2n)T¢5ﬁ(t, z, I, .’L‘)}di,

I

® is said to be invex in z, & and Z on I with respect to 7.

Definition 2 (Pseudoinvexity). @ is said to be pseudoinvex in z, fandi with
respect to n if

/{nT%(t, z,&,%) + (D) ¢s(t, z, 4, ) + (D*n)" ¢(t, z, &, %) }dt 2 0
!
implies ®(z, 4, i) 2 ®(z, &, %).

Definition 3 (Quasi-invex). The functional ® is said to quasi-invex in z, £ and
& with respect to n if ®(z, 4, 4) S ®(z, 2, &) implies

/ (0T bult, 2, 2, 8) + (D) ¢alt, z, &, &) + (D) ¢5(t, 2, &, 7)}dt £ 0.
I

3. Variational problem and optimality conditions

Before stating our variational problem and deriving its necessary optimal-
ity condition, we mention the following conventions for vectors z and y in n-

dimensional Euclidian space R™ to be used throughout the analysis of this re-
search.

<y, & x;<y, t=1,2,...,n.
xéy, A4 xiéyi, i=1,2,...,n
<y, & <y, i=1,2,...,m, butzs#y

z £y, isthe negationof z <y
FYor z,y € R, x < y and z < y have the usual meaning.
We present the following variational problem:

(VPE) Minimize( / iz, x 8)dt, .. / fP(t,x, &, :‘i:)dt)
I I

Subject to
z(a) = 0 = z(b) (1)
i(a) =0 = z(b) 2
glt,z,2,8) <0, tel (3)
h(t,z,&,%) =0, tel, 4)

where



126 1. Husain, A. Ahmed and Rumana, G. Mattoo

(1) fifirIXR*XR"xR"—R,i=1,2,...,p,g: I x R* x R® x R® — R™ and
h:IxR"x R"x R™ — R* are continuously differentiable function, and

(2) X designates the space of piecewise functions z : I — R™ possessing deriva-
tives & and & with the norm ||z} = ||2]leo + || DZ]lco + | D*T|00, Where the
differentiation operator D is given by

¢
v=Dr&z(t)=a+ / u(s)ds,
a

where « is given boundary value; thus D = % except at discontinuities.

In the results to follow, we use C(I, R™) to denote the space of continuous
functions ¢ : I — R* with the uniform norm ||¢]] = sup |@|ter; the partial
derivatives of g and h are m x n and k& x n matrices respectively; superscript T
denotes matrix transpose.

We require the following definition of efficient solution for our further analysis.

Definition 4 (Efficient Solution). A feasible solution Z is efficient for (VPE) if
there exist no other feasible z for (VPE) such that for some i € P ={1,2,...,p},

/ fit,z, &, )dt < / f(t,z,1,15)dt
I I
and
/fj(t,:lz,ﬁ, Idt < /fj(t, Z, T, ﬁ_;")dt forall e P, j#1.
I i§
In relation to (VPE), we introduce the following set of problems P, for each
r=1,2,...,p in the spirit of [6], with a single objective,
(P.)  Minimize / (¢, &, 8)dt
I
Subject to
z{a) =0=z(b), #(a) =0=z(b),
g(t,;c,:i;,.‘li)§0, teI’
h(t,z,%,%) =0, tel,
/fi(t,m,:k,a’f:)dt < /f@'(t,z,f,;é)dt, i=12. . .pitr
I I
The following lemma can be proved on the lines of Chankong and Haimes [6].

Lemma 1. z* is an efficient solution of (VPE) if and only if  is an optimal
solution of (P;) for each r =1,2,...,p.
Consider the following single objective variational problem considered in [10].

(Po) Minimize / ot x, &, T)dt
I
Subject to

z(a) =0 =z(b), i(a)=0=2(b),
g(t,2,8,5) £ 0, h(t,z,4,8) =0, tel,
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where ¢ : I Xx B* x R* x R™ — R.

The following proposition gives the Fritz-John type necessary optimality con-
ditions obtained by Husain and Jabeen {10]. In this proposition, we have written
the functions without arguments for brevity.

Proposition 1 ([10], (Fritz John Optimality Conditions)). If Z is an optimal
solution of (Py) and hy(x(:),£(-),#(-)) maps X into the subspace of C(I, R¥),
then there exists Lagrange multiplier T € R, the piecewise smooth y : I — R™
and Z : I — R*, such that

(Fe + §(8) g0 + 2(t) " he) — D(Fds + ()" g9: + 2(t) ha)
+D*(Fos + G(t) gz + 2(t)Ths) =0,  tel,
g(t)Tglt,3,2,5) =0, tel,
(7,9(t) 20, tel,
(7, 5(t),2(t)) #0, tel
If T = 1, then the above optimality conditions will reduce to the Karush-Kuhn-

Tucker type optimality conditions and the solution T is referred to as & normal
solution.

We now establish the following theorem that gives the necessary optimality
conditions for (VPE).

Theorem 1 (Fritz-John Conditions). Let T be an efficient solution of (VPE)
and hg(x(-),&(-), £(-)) maps X into the subspace of C(I, R*), then there ezist
X € Rk and the piecewise smooth §: I — R™ and z: I — RF, such that

(N o+ 5) g5 + 2(t)Tha) — DONT £ + ()T g0 + 2(t) " hs)

+D2(\T f5 + 5(t) gz + 2)Ths) =0,  tel, (5)
gt)Tg(t,5,%,3) =0, tel, (6)

Mgy =0, tel (7

Mg, 2@) #0, tel (8)

Proof. Since 7 is an efficient solution of (VPE) by Lemma 1, Z is an optimal
solution of (7,), for each 7 = 1,2,...,p. From Proposition 1, it follows that,
there exist scalars A", A?", ..., A" and piecewise smooth function § : I — R™
and 7 : I — R such that

p m k
MR A NN "G (gl + > FT (R,
;;}‘ Fe=1 =1
p m ] k
—D(X"f; + YN P+ Y 2 (t)hi->

g j==1 I==1
iHr
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P m k
+0° (:‘”f%' + NS+ D (0g) + 32 on ) tel,
iz s=1 =1
7T (t)g(t,7,5,3) =0, tel,
(I XL e 7T (1), 77 (t),. . ., g™r(t) 20, tel,

I A% NPT @), P, . L, (), 2 (1), 22 (), .., BT (E) £0, tel.

Summing over r, we have

> (Z”")fz 53 (Zy”(t))g £y (f%))hﬁc

r=1 r=1 r=1 \i=1
<z<z>z<z> (o))
gT(t)g(t,iz,g‘j,a‘“é)= 0, teI,
(ii“,...,ii\m;igh’(t), Zg‘m"(ﬁ))z tel,
o V=l =1 =1 =1
(f:xl",...,f:xm;f:g“(t),...,igmf(t);iz”(n,...,f:z”(t)) #0
r=1 i=1 i=1 i=1 r=1 r=1

Setting X\ = zpj N gi(t) = f Fr(t), tecIandZ(t)= zlj Zr(t), tel,
we have = =t =
OT f2 + 5()7 92 + 2(t)Ths) — DT £ + §(t)T g5 + 2(t)"ha)
+D*(AT f5 4+ (1) T + 2t)Thg) =0,  tel,
gt) g(t,z,%,%) =0, tel,
Ag) 20, tel,
X g(t), 2(t) #0, tel

o

Theorem 2 (Karush-Kuhn-Tucker Conditions). Let Z be an efficient solution
for (VPE) which is assumed to be normal for (P.) for each r = 1,2,...,p
Let the constraints of (P,) satisfy Slater’s Constraint Qualification [5] for each
r=1,2,...,p. Then there ezist \T € Rk, §:I - R™ and z: I — R*, such
that the following relation hold for allt € 1,
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A fo +5(8)7 92 + 2(t) ha) = DOV fo + 5(t) g6 + 2()T ha)

+D T i + g0 gz + 2)Thy) =0,  tel, 9)
gt 9(t,2,3,8)=0, tel (10)
A>0, y(t)20, tel. (11)

Proof. Since Z is an efficient solution of (VPE) by Lemma 1, Z is an optimal
solution of (P, ), for each r = 1,2,...,p then there exist scalars Mrs A2rs ++ oy Apr
with \pp =1, 5: 1 — R™ and Z : I — RF, such that the following condl‘mons
are satisfied for all

fT+ZAZTfT+Zy]T{t>gz+Z_lT t)hlz

zaér
k
—D<f" + Z/\”f’" + Zy’ (t)gl + Z t)hl)
i=1 l=1
z#r
+D2<fr+Zf\"fr+zy”{t)9x+z"“ W) =0, te
13;67' =1
7T g(t,z,%,) =0, tel,
y(t) 2 0,
Xir >0, i=1,2,...,p, i £

- P s
Summing over 7 and setting A; = Y X with A" = 1,

Tl

PO =370, #0)=> 20

we have

(A fo+9() gz + 20 ha) — DO f5 + §(1) 95 + 2(8)" ha)
+D2(AT s + () g5 + 2)Ths) =0, tel,
§(t)Tg(t,z,%,1) =0, tel,
A>0, gt)=0, tel.

O

Remark. If A > 0, then Theorem 1 reduces to Theorem 2 and then an efficient
solution is called a normal solution as an analogy to the normality conditions
which is equivalent to Slater’s Constraint Qualification given in [5].
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4. Wolfe type duality

In this section, we consider the following variational problem involving higher
order derivatives, by suppressing the equality constraint in (VPE).

(VP) Minimize </f1 (t,z, &, T)dt,. .., /fp(t, z, T, :i)dt)
: I 1
Subject to
z(a) =0=2z(b), @(a)=0=i(b),
g(t,z,2,8) £0, tel

We formulate the following Wolfe type dual to the problem (VP) and establish
various duality results under invexity defined in the preceding section.

(WD) Maximize( / (fH{t, w0, i) + y(O)T gt, u, @, @))dt

o [P0+ 00 ) )
Subject to Z
u(a) =0=u(b), ul(a)=0=ulb),
(/\fo + y(t)Tgx) - D(}\Tfa'r: + y(t)ngk)

+D*(XT s +y()Tgz) =0, tel (12)
y(t) 20, tel (13)
A>0, Me=1 (14)

where e =(1,1,...,1)7 and X e RF.
Theorem 3 (Weak Duality). Let x € X be feasible for (VP) and (u, A, y) be

feasible for (WD), if [, XT fdt is invex and [, y(t)T gdt is invex with respect to
the same n. Then :

[ 1662889 < / (/) + y() T g(t, w0, e}t
1 I

Proof. ‘

AT ( /1 [t z, &, F)dt — /1 {F(t,u, %, 8) +y()T g(t,u, 4, ﬁ)e}dt)

ﬁv‘f(t, 2,8, 5) = ¥ f(t, u, 1, i) — (N e)y(t)T glt, u, 4, #))dt

i

I

/ATf(ta z, i'B, x)dt - /ATf(t‘) U, ":"7 U)dt - /y(t)Tg(t)u’ 'if" '&)dt)
I I I
(by using A\Te=1)
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/I (O £2) + (D) (VT £) -+ (D2n)T (VT fi) el
~ [ vty gt iy (15)
I

This is possible by invexity of f; AT fdt Also from the feasibility of (VP) and
(WD), we have

/y(t)T(t,x,i, E)dt — /y(t)Tg(t,u,u, iiydt
I 1

/I (" 9)e + (D0 W7 g)s + (DPn)T (7 g)s bt
(by definition of Invexity)

This implies

Y

— /1 y(®) g(t,u, 0, 6)dt 2 / (" " 9)x + (DT ¥ 9)z + (D°n)" (y" 9)s }dt
/ y(t)T g(t, z, &, %)dt

I

Using this in (15), we have,

)\T< /1 f(t, 7, &, 8)dt /1 {f(t,u,u,u)+y(t)Tg<t,u,u,u)e}dt>
> [T g+ (D0 OT )+ (DF) OT g
/ "W 9z + (D) W7 9)z + (D*m)" (y" 9)s )t
/1 o) g(t, 2, 8, 5)de

[ OT 447 00 + (D0 (7 s +472)

DT O f5 + y" gs) Yt — /1 y(t)Tg(t, z, &, %)dt
= [T T+ O fs 4 )2

— [ DT s 4 4 e+ (D) O fe 4 05 2
- /I (D))" DT f3 + yT gz )dt — /I y() T g(t, z, &, 7)dt

(by integration by parts)
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Using the boundary conditions which give Dnp =0 =natt=aq,t=05
= fI 1" AT fo + v go)dt — / 1T DT £z +yTgo)dt + n" DOT 5 + y" 95) =5
I

+/77TD2()\Tf5 + yng-c-)dt - /y(t)Tg(t,x, Z, Z)dt
I I

(by integration by parts)
Using the boundary conditions which give Dnp =0=natt=a,t=15
= /1 W {(\" fo + 47 9a) = DO fi + 4" ga) + D (AT f + 9" g2) }at

- / y(t)Tg(t, z, &, &)dt
I

v

—/[y(t)Tg(t, z, &, )dt, (by equation (12))
2 0 (by(3)and (13))

That is,

[t ia gz [OF e )+ 0 b0, )}t
I I
or

AT( / ft,z, &,8))dt 2 AT ( / {£(t,u, %, 8) + y(t) T g(t, u, 4, d)e})dt
I I
This yields,

/f(t,x,i, E)dt £ /{f(t, u, b, i) + y(t) T g(t, u, @, ii)e}dt . O
I I

Theorem 4 (Strong Duality). If £ is efficient and normal solution of (VP),
then there exist piecewise smooth i : I — R™ such that (Z,7) is feasible for
(WD) and the corresponding objective values of the problems (VP) and (WD)
are equal. If the hypotheses of Theorem 2 are satisfied, then (I, §) is an efficient
solution of (WD).

Proof. Since Z is efficient and normal for (VP), by Theorem 2, it implies that
there exist y € RP and piecewise smooth 4 : I — R™ such that,

W fo + u®)Tgs) — DT i +u(t)Tgs) + D (T fz + u(t)9z) =0, tel,
at)Tg(t,z,2,5) =0, tel,
w>0 ()20, tel
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Since p > 0, uTe # 0.

(FORES DR(CORES 1)

of (N, L u®)T"
+D /_,I:T-e— fz + m gz | = U, tel
y(t) " p y(t)
= _— >0t 2 tel
(u e) g( ’x’m7x) 07 uTe > k) IJITe -= )

t
Setting —— e = \; and y( ) = g(t) in the above relations, we have

(M fo+ :U(t)Tgm) - D(S\Tfa‘c +5(t)7 g)

+D2 (;‘sz + 'g(t)Tga'i) =0, tel (16)
gj(t)Tg(t, z,7,7)=0, tel (17)

A>0 g(t)20
?j\g"i;l}’ tel (18)

From (5) and (7), it follows that (Z, ), §) is feasible for (WD). The equality of
the objective of (VP) and (WD) is obvious in view of (17).

The efficiency of (z, ), §) for (WD) follows from Theorem 3.

As in [13], by employmg chain rule in calculus, it can be easily seen that the
expression (AT f, +y(t)"g:) — DO fi + y(t)" ) + D (AT fz + y(t)T 93), may
be regarded as a function 6 of variables ¢, z, &, &, %, y, ¥, § and A, where
T = D3zand §j = D?y. That is, we can write

e(t’ m? i’ i? .i.7 y? y” y’ >\)
= (VT fo +y(t)"92) = DT fz + y(8)" ) + D* (X" fi + ()" g2)
In order to prove converse duality between (VP) and (WD), the space Xis
now replaced by a smaller space X, of piecewise smooth thrice differentiable

function z : I — Rwith the norm ||z]|oo + || D[ + || D?2[lco + [[D?z]|co- The
problem (WD) may now be briefly written as,

Minimize — (/(f (t,z,,%) +y) T g(t, z, 2, 3))dt

7

oo [P0, 40 o 0,5, )
i
Subject to
z(a) =0 =z(b), #(a) =0=%(b),
e(t’ x’i’ i’ ‘1‘“7 y’ y’? g’ A) = 07 y(t) Z 07 t E I



134 I. Husain, A. Ahmed and Rumana, G. Mattoo

A>0, AMe=1
where e =(1,1,...,1)T € RP and A € RP.

Consider 6(t, x(-), (), #(), F(), () #(), #(), A) = 0 as defining a mapping
1 XgxY x RP — B where Y is a space of piecewise twice differentiable function
and B is the Banach Space. In order to apply Theorem 1 to the problem (WD),
the infinite dimensional inequality must be restricted. In the following theorem,
we use 1'to represent the Frécheét derivative [¢.(z,y, A), ¥y(Z, 3, A), Ua(z, y, A)]-

Theorem 5 (Converse Duality). Let (%, \,§) be an efficient solution of (WD)
and ¢ has a (weak*) closed range. Assume that
(Hy) f and g are twice differentiable,
(H2) the hypotheses of Theorem 3 hold, and
(Hs) o®)T(a(t)T0, — Do(t)T 03 + D?0(t)T0; — D30(t)T04) =0,t €1
=0o(t)=0,tel
Then Z is an efficient solution of (VP).

Proof. Since (Z, A, 7) is an efficient solution of (WD) and %' has a closed range,
then by Theorem 1, there exist o € R* and piecewise smooth 8 : I — R™ ¢ :
I — R™ and p” € RP such that

[—(afe + (@Te)y(t)  g5) + B(t)T 6] — DI—(afi + (aTe)y(t) gz) + B(t) 78]

+H—(afs + (@Te)y(t)Tgs) + B(t)T0:] — D3B(t)T 64 =0 (19)
—(aTe)g + B(t)"6, — D(B(1)T6;) + D*(B(t)"65) — &(t) =0 (20)
Bt)(fo —Dfe +D*fa) +4' +7=0 (21)
uTA=0 (22)
E)Ty(t) =0 (28)

p .

N—1]=0 24)
7<; ) (
(o, 1,7, €(8)) 20 (25)
(e, B(t), s 7, E(8)) # O (26)
Since A > 0, (22) implies p = 0. Consequently (21) implies
BT (fi — Dfs + D*f3) = — (27)

From the equality constraint of the dual problem (WD) together with (27), it
follows

P
y(t)" 9. — Dy(t)"9s + Dy(t)T9s = — > MN(fi—Dfi+D*f})
=1
- |
W) 9. — Dy(H)" g: + D*y(1)"9:)8(t) = - N(fi — Dfi+ D*f3)A()

4=1
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= =Y XM =1 (28)
i=1

Postmultiplying (19) by 3(t) and then using (27) and (28), we have

(Bt)"65 — DB(t)" 65 + D*(t)" 6z — D*B(t) T 6+)B(t) =

This because of the hypothesis of (H3) yields

Bty=0, tel. (29)

Therefore from (27), we have v = 0.

Suppose o = 0, then from (20), £(t) = 0,t € I. Consequently we have
(o, B(t), 1,7, £(t)) = 0, t € I. This is in contradiction to (26)

Hence a > 0. The relation (20) in conjunction with (29) yields,

8B

ale =
This implies the feasibility of Z for (VP). The relation (30) with (23) yields

y(t) gt x,2,8) =0, tel. (31)

g{t,x,&,%) = (30)

This implies,

/(f’(tuuu)—l—y() g(t,u, 4, 4))dt = /ft:cmx)dt

This along with an application of Theorem 3 accomplishes the efficiency of Z for
(VP). |

5. Natural boundary values

The duality results obtained in the preceding sections can easily be extended

to the multiobjective variational problems with natural boundary values rather
than fixed end points.

Primal (P;) Minimize (/f (t,z,&,%)d /f (t,x,&,& dt)

Subject to
g(t,z,4,%) £ 0, tel
Dual (D4) Maximize /(f(t, w, , i) + y(t) T gt, u, 4, i)e)dt

I
Subject to

OT fo +y(t) " g2) — DT £z + y(t)T g2)
+D*(WT fz +y(t)Tgz) =0, tel
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()\Tfa'c +y(t)T9:b) =0, at t=a and t=0b
OTfs +y(t)Tgz) =0, at t=a and t=5
y20, A>0, Me=1,

where e = (1,1,...,1)T € RP.

6. Nonlinear programming

If the problems (P,) and (D;) are independent of t, then they will reduce the

following multiobjective nonlinear programming problems: studied in {8]

(NP):  Minimize f(z)

Subject to
g(z) <0.

(ND):  Maximize f(z)+y" g(z)e

10.

11.

12.

13.

Subject to
)‘sz + yTgw =0, y=20.
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