• 제목/요약/키워드: higher-order nonlinear

검색결과 377건 처리시간 0.027초

ON PERIODIC BOUNDARY VALUE PROBLEMS OF HIGHER ORDER NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS WITH p-LAPLACIAN

  • Liu, Yuji;Liu, Xingyuan
    • 대한수학회논문집
    • /
    • 제24권1호
    • /
    • pp.29-40
    • /
    • 2009
  • Motivated by [Linear Algebra and its Appl. 420(2007), 218-227] and [Linear Algebra and its Appl. 425(2007), 171-183], we, in this paper, study the solvability of periodic boundary value problems of higher order nonlinear functional difference equations with p-Laplacian. Sufficient conditions for the existence of at least one solution of this problem are established.

A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • 제33권3호
    • /
    • pp.295-308
    • /
    • 2017
  • We introduce a Crank-Nicolson characteristic finite element method to construct approximate solutions of a nonlinear Sobolev equation with a convection term. And for the Crank-Nicolson characteristic finite element method, we obtain the higher order of convergence in the temporal direction and in the spatial direction in $L^2$ normed space.

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.257-270
    • /
    • 2018
  • An extrapolated Crank-Nicolson characteristic finite element method is introduced for approximate solutions of nonlinear Sobolev equations with a convection term. And we obtain the higher order of convergence for approximate solutions in the temporal and the spatial directions with respect to $L^2$ norm.

A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS

  • KIM JUNSEOK;SUR JEANMAN
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.179-193
    • /
    • 2005
  • We present results of fully nonlinear time-dependent simulations of a thin liquid film flowing up an inclined plane. Equations of the type $h_t+f_y(h) = -{\in}^3{\nabla}{\cdot}(M(h){\nabla}{\triangle}h)$ arise in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, t) is the fluid film height. A hybrid scheme is constructed for the solution of two-dimensional higher-order nonlinear diffusion equations. Problems in the fluid dynamics of thin films are solved to demonstrate the accuracy and effectiveness of the hybrid scheme.

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • Asgari, Gholamreza;Payganeh, Gholamhassan;Fard, Keramat Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.525-540
    • /
    • 2019
  • The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory

  • Allah, Mohamed Janane;Timesli, Abdelaziz;Belaasilia, Youssef
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.1-17
    • /
    • 2022
  • The free and forced nonlinear dynamic behaviors of Porous Functionally Graded Material (PFGM) plates are examined by means of a High-Order Implicit Algorithm (HOIA). The formulation is developed using the Third-order Shear Deformation Theory (TSDT). Unlike previous works, the formulation is written without resorting to any homogenization technique neither rule of mixture nor considering FGM as a laminated composite, and the distribution of the porosity is assumed to be gradually variable through the thickness of the PFGM plates. Using the Hamilton principle, we establish the governing equations of motion. The Finite Element Method (FEM) is used to compute approximations of the resulting equations; FEM is adopted using a four-node quadrilateral finite element with seven Degrees Of Freedom (DOF) per node. Nonlinear equations are solved by a HOIA. The accuracy and the performance of the proposed approach are verified by presenting comparisons with literature results for vibration natural frequencies and dynamic response of PFGM plates under external loading. The influences of porosity volume fraction, porosity distribution, slenderness ratio and other parameters on the vibrations of PFGM plate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of the PFGM plate.

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method

  • Ahmed, Ridha A.;Mustafa, Nader M.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.413-420
    • /
    • 2020
  • Considering inverse cotangential shear strain function, the present paper studies nonlinear stability of nonlocal higher-order refined beams made of metal foams based on Chebyshev-Ritz method. Based on inverse cotangential beam model, it is feasible to incorporate shear deformations needless of shear correction factor. Metal foam is supposed to contain different distributions of pores across the beam thickness. Also, presented Chebyshev-Ritz method can provide a unified solution for considering various boundary conditions based on simply-supported and clamped edges. Nonlinear effects have been included based upon von-karman's assumption and nonlinear elastic foundation. The buckling curves are shown to be affected by pore distribution, geometric imperfection of the beam, nonlocal scale factor, foundation and geometrical factors.

A GENERAL FORM OF MULTI-STEP ITERATIVE METHODS FOR NONLINEAR EQUATIONS

  • Oh, Se-Young;Yun, Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.773-781
    • /
    • 2010
  • Recently, Yun [8] proposed a new three-step iterative method with the fourth-order convergence for solving nonlinear equations. By using his ideas, we develop a general form of multi-step iterative methods with higher order convergence for solving nonlinear equations, and then we study convergence analysis of the multi-step iterative methods. Lastly, some numerical experiments are given to illustrate the performance of the multi-step iterative methods.