Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2009.10a
/
pp.421-426
/
2009
This paper presents vibration analysis of maskless exposure module in Printed Circuit Board (PCB) manufacturing system. In order to complete exposure process in PCB, masking type module has been widely used in electronics industries. However, masking process confronts some limitations of application due to higher production cost for masking as well as lower printing resolution. Therefore, maskless exposure module is started to be in the spotlight for flexible production system to meet the needs of fabrication in variable patterns at low cost. Since maskless exposure process adopts direct patterning to PCB, vibration problems become more critical compared to conventional masking type process. Moreover, movements of exposure engine as well as stage generate vibration sources in the system. Thus, it is imperative to analyze the vibration characteristics for the maskless exposure module to improve the quality and accuracy of PCB. In this study, vibration analysis using the Finite Element Analysis is conducted to identify the critical structural parts deteriorating vibration performance. Also, Experimental investigations are conducted by single/dual encoder measurement process under the operating module speed. Measurement points of vibration are selected by three places, which are base of stage, exposure engine and top of stage, to check the effect of vibration from the exposure engine. Comparisons between analysis results and experimental measurement are conducted to confirm the accuracy of analysis results including the developed FE model. Finally, this studies show feasibility of optimal design using the developed FE analysis model.
The effect of 3DVAR (Three Dimension Variational data Assimilation) was examined by comparing observation and the simulations of CNTL (to which data assimilation was not applied) and ALL (to which data assimilation was applied using ground observation data and radar data) for the case of a heavy snowfall event (case A) of 11-12 February 2011 in the Yeongdong region. In case A, heavy snow intensively came in the Yeongdong coastal region rather than Daegwallyeong, in particular, around the Gangneung and Donghae regions with total precipitation in Bukgangneung at approximately 91 mm according to the AWS observation. It can be seen that compared to CNTL, ALL simulated larger precipitation along the Yeongdong coastline extending from Sokcho to Donghae while simulating smaller precipitation for inland areas including Daegwallyeong. On comparison of the total accumulated precipitations from simulations of CNTL and ALL, and the observed total accumulated precipitation, the positive effect of the assimilation of ground observation data and radar data could be identified in Bukgangneung and Donghae, on the other hand, the negative effect of the assimilation could be identified in the Daegwallyeong and Sokcho regions. In order to examine the average accuracy of precipitation prediction by CNTL and ALL for the entire Gangwon region including the major points mentioned earlier, the three hour accumulated precipitation from simulations of CNTL and ALL were divided into 5, 10, 15, 20, 25 and 30 mm/3hr and threat Scores were calculated by forecasting time. ALL showed relatively higher TSs than CNTL for all threshold values although there were some differences. That is, when considered generally based on the Gangwon region, the accuracy of precipitation prediction from ALL was improved somewhat compared to that from CNTL.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.9
/
pp.1816-1821
/
2016
Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.
Ju, Gyeong Jin;Seol, Sang Suk;Kim, Yong Gil;Kim, Soo Tae
Journal of Drive and Control
/
v.17
no.1
/
pp.21-26
/
2020
The load characteristics of a piston pump holder due to the squeeze effect are influenced by the surface shape and gap thickness of the holder (cradle). Therefore, the pressure distribution and the load capacity of the piston pump holder due to the squeeze effect are studied by using the CFD software and the surface shape and gap thickness of the piston pump holder are considered. In order to verify the accuracy of numerical results, the load capacities of a circular plate holder are numerically studied, and the accuracy of numerical results is verified by comparing with the theoretical results. Also, the pressure distribution and load capacity of the rectangular plate holder of a piston pump are obtained by using the CFD software. The results show that the load capacity of the square plate holder with grooves is slightly higher at a low gap thickness, but the effects of the number and arrangement of grooves on the load capacity of the holder are weak. We conclude that the load capacity and the maximum pressure are slightly affected due to the existence of grooves on the holder surface, and the fluid storing effect of the holder surface grooves during the operation is likely to prevent the dry-sticking phenomenon.
Deformation behaviour of rock mass around an opening measured during tunnel excavation is very important in order to assess the stability of the tunnel. Unfortunately displacement measured only after the installation of displacement measuring device can be acquired, which results in inevitably excluding the pre-displacement occurred and accumulated before the displacement measuring devices are installed. So it is very important to consider the pre-displacement based on the elapsed time before zero reading after deformation behaviour started. In this study, the accuracy of total estimated displacement depending on the distance between face and measurement position is calculated by statistical non-linear fitting on measurable displacement data. Besides, the influence of the unavoidable measurement error is considered by using Monte-Carlo simulation. As a result, the faster the initial reading started and the smaller the measurement error is, the higher the accuracy of estimating total displacement is obtained.
Linked Data allows structured data to be published in a standard way that datasets from various domains can be interlinked. With the rapid evolution of Linked Open Data(LOD), researchers are exploiting it to solve particular problems such as semantic similarity assessment. In this paper, we propose a method, on top of the basic concept of Linked Data Semantic Distance (LDSD), for calculating the Linked Data semantic distance between resources that can be used in the LOD-based recommender system. The semantic distance measurement model proposed in this paper is based on a similarity measurement that combines the LOD-based semantic distance and a new link weight using TF-IDF, which is well known in the field of information retrieval. In order to verify the effectiveness of this paper's approach, performance was evaluated in the context of an LOD-based recommendation system using mixed data of DBpedia and MovieLens. Experimental results show that the proposed method shows higher accuracy compared to other similar methods. In addition, it contributed to the improvement of the accuracy of the recommender system by expanding the range of semantic distance calculation.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.6
no.11
/
pp.2784-2799
/
2012
Biological data have been increased exponentially in recent years, and analyzing these data using data mining tools has become one of the major issues in the bioinformatics research community. This paper focuses on the protein construction process in higher organisms where the deoxyribonucleic acid, or DNA, sequence is filtered. In the process, "unmeaningful" DNA sub-sequences (called introns) are removed, and their meaningful counterparts (called exons) are retained. Accurate recognition of the boundaries between these two classes of sub-sequences, however, is known to be a difficult problem. Conventional approaches for recognizing these boundaries have sought for solely enhancing machine learning techniques, while inherent nature of the data themselves has been overlooked. In this paper we present an approach which makes use of the data attributes inherent to species in order to increase the accuracy of the boundary recognition. For experimentation, we have taken the data sets for four different species from the University of California Santa Cruz (UCSC) data repository, divided the data sets based on the species types, then trained a preprocessed version of the data sets on neural network(NN)-based and support vector machine(SVM)-based classifiers. As a result, we have observed that each species has its own specific features related to the splice sites, and that it implies there are related distances among species. To conclude, dividing the training data set based on species would increase the accuracy of predicting splicing junction and propose new insight to the biological research.
A hypernetwork is a generalized hypo-graph and a probabilistic graphical model based on evolutionary learning. Hypernetwork models have been applied to various domains including pattern recognition and bioinformatics. Nevertheless, conventional hypernetwork models have the limitation that they can manage data with categorical or discrete attibutes only since the learning method of hypernetworks is based on equality comparison of hyperedges with learned data. Therefore, real-valued data need to be discretized by preprocessing before learning with hypernetworks. However, discretization causes inevitable information loss and possible decrease of accuracy in pattern classification. To overcome this weakness, we propose a novel feature-wise L1-distance based method for real-valued attributes in learning hypernetwork models in this study. We show that the proposed model improves the classification accuracy compared with conventional hypernetworks and it shows competitive performance over other machine learning methods.
Generally, a semiconductor chip measured with a few micro units is captured by line scan camera for higher inspection accuracy. However, the faulty inspection requires an exact boundary detection algorithm because it is very sensitive to scan speed and lighting conditions. In this paper we propose boundary detection using subpixel edge detection method in order to increase the accuracy of bump faulty detection on chips. The bump edge is detected by first derivative to four directions from bump center point and the exact edge positions are searched by the subpixel method. Also, the exact bump boundary to calculate the actual bump size is computed by LSM(Least Squares Method) to minimize errors since the bump size is varied such as bump protrusion, bump bridge, and bump discoloration. Experimental results exhibit that the proposed algorithm shows large improvement comparable to the other conventional boundary detection algorithms.
In usual language models(LMs), the probability has been estimated by selecting highly frequent words from a large text side database. However, in case of adopting LMs in a specific task, it is unnecessary to using the general method; constructing it from a large size tent, considering the various kinds of cost. In this paper, we propose a construction method of LMs using a small size text database in order to be used in specific tasks. The proposed method is efficient in increasing the low frequent words by applying same sentences iteratively, for it will robust the occurrence probability of words as well. We carried out continuous speech recognition(CSR) experiments on 200 sentences uttered by 3 speakers using LMs by iterative teaming(IL) in a air flight reservation task. The results indicated that the performance of CSR, using an IL applied LMs, shows an 20.4% increased recognition accuracy compared to those without it. This system, using the IL method, also shows an average of 13.4% higher recognition accuracy than the previous one, which uses context-free grammar(CFG), implying the effectiveness of it.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.