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Abstract 
 

Biological data have been increased exponentially in recent years, and analyzing these data 

using data mining tools has become one of the major issues in the bioinformatics research 

community. This paper focuses on the protein construction process in higher organisms where 

the deoxyribonucleic acid, or DNA, sequence is filtered. In the process, “unmeaningful” DNA 

sub-sequences (called introns) are removed, and their meaningful counterparts (called exons) 

are retained. Accurate recognition of the boundaries between these two classes of 

sub-sequences, however, is known to be a difficult problem. Conventional approaches for 

recognizing these boundaries have sought for solely enhancing machine learning techniques, 

while inherent nature of the data themselves has been overlooked. In this paper we present an 

approach which makes use of the data attributes inherent to species in order to increase the 

accuracy of the boundary recognition. For experimentation, we have taken the data sets for 

four different species from the University of California Santa Cruz (UCSC) data repository, 

divided the data sets based on the species types, then trained a preprocessed version of the data 

sets on neural network(NN)-based and support vector machine(SVM)-based classifiers. As a 

result, we have observed that each species has its own specific features related to the splice 

sites, and that it implies there are related distances among species. To conclude, dividing the 

training data set based on species would increase the accuracy of predicting splicing junction 

and propose new insight to the biological research. 
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1. Introduction 

Protein function prediction has been an important problem in molecular biology, genetics 

and bioinformatics, since proteins perform the most essential functions in an organism in such 

forms as structural proteins, enzymes, and transmembrane proteins. Thus understanding 

protein functions can help develop new drugs, better crops, biochemicals, etc. [1]. 

In molecular biology, proteins are known to be constructed by a process, called the central 

dogma, of converting a gene to protein via the transcription and translation phases, where 

transcription refers to the phase of producing ribonucleic acid, or RNA, copies from 

deoxyribonucleic acid, or DNA. During transcription, only exons and introns are copied from 

DNA to RNA. An exon is a nucleic acid sequence that is represented in the mature form of an 

RNA molecule, either after portions of a precursor RNA (i.e., introns) has been removed by 

splicing, or when two or more precursor RNA molecules have been ligated by splicing. An 

intron is any nucleotide sequence within a gene that is removed by RNA splicing to generate 

the final mature RNA product of a gene. After transcription, splicing occurs by modifying an 

RNA within which introns are removed and exons are joined. The next phase, translation, is 

the stage of protein biosynthesis. During translation, messenger RNA (mRNA) produced by 

transcription is decoded by the ribosome to produce a specific amino acid chain, or 

polypeptide, that will later fold into an active protein. 

Recognizing boundaries of exons and introns is an important problem for understanding the 

production of a protein, hence for the prediction of protein structure, for example, as used in 

alternative splicing [2][3]. Alternative splicing means the process by which exons of the RNA 

produced by transcription of a gene (e.g., a primary gene transcript or pre-mRNA) are 

reconnected in multiple ways during RNA splicing. As the result of this splicing, various 

forms of proteins are produced. In other words, predicting the boundaries of exons and introns 

leads to the possibility of predicting the protein structures [2]. This paper aims to address this 

problem of predicting splice sites. 

Conventionally, approaches to splice site prediction have used machine learning techniques 

such as knowledge-based artificial neural networks (KBANN) [4][5], neural networks (NN) 

combined with rule-based systems [6], support vector machine (SVM) [7], and so on. We 

believe that this was a reasonable trend because splice sites prediction is basically a 

classification problem, just like many other problems in many engineering domains do use 

statistical classifiers for prediction (e.g., see [8][9][10][11]). In our domain, simply speaking, 

these conventional approaches tried to find answers to “Which machine learning algorithm is 

better-suited for this biological problem?” to achieve better accuracy in splice site prediction. 

On the other hand, other school of researchers [2][12][13] observed that splicing patterns 

have species variations, suggesting that splice sites may be species dependent. Basically, their 

common findings are that for some particular genes or enzymes appearing in two species, even 

though their gene sequences are very similar, their splice sites are quite different species by 

species. Although they have dealt with only a few specific species and proteins focused 

individually, these observations may help us develop more general methods for splice site 

prediction if we can consider the relationships among species with respect to splicing patterns 

for thousands of splice sites. This idea has motivated our research, and this paper describes an 

initial attempt towards this direction.  

In the preliminary version of this paper [14], we proposed a novel approach to splice site 

prediction and showed experimental results. There, we focused on sketching the experiments 
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and presenting the results, without explaining the detailed process. In this paper, we explicate 

our approach by providing biological background knowledge and describing in detail the 

representation scheme and the process of experimentation. Basically, our proposed approach 

handles together multiple sets of gene data from different species at the same time, with an aim 

to exploit the implicit relationships among various species in the process of predicting their 

corresponding splice sites. Based on the observations by [2][12][13] discussed earlier, we first 

assume that species belonging to the same class would present more similar characteristics to 

one another than to those belonging to other class, then we hypothesize that the accuracy of 

splice site prediction can be increased through a machine learning process which can utilize 

the implicit relationships among various species, inherently embedded in their gene data. 

Validating this hypothesis is the objective of our research in this paper. 

As for the choice of machine learning algorithm, it does not matter which algorithm to use 

because our aim is not to develop the best prediction algorithm but to show the dependency of 

a prediction process by species characteristics. Nonetheless, we wish to be sure that our 

hypothesis can be validated by at least two standard machine learning algorithms. For this 

reason, we have chosen NN and SVM for our experiments. 

The contribution of our work can be summarized as follows. First, we use about 4,000 genes 

from each species in training and testing the classifier in order to learn splicing patterns 

inherent to the particular species. This is different from existing approaches where one or two 

specific genes were studied to observe the species variance of splice sites. As for the number 

of species studied, we use four species whereas existing approaches used two or three. Second, 

we design an experiment process to validate the hypothesis of species variations by comparing 

the resulting species-specific classifiers. This is done by observing the difference in the 

prediction accuracy between the case when testing a species’ data by that species’ classifier 

and the case when testing the species’ data by other species’ classifier. We perform this test for 

all possible combinations among the four species chosen in our experiments. Third, we 

diversify our experiments to draw small but meaningful observations additionally. When 

choosing the four species, we diversity them in an “unbalanced” way by choosing two species 

from the same class (i.e., mammals) and the other two species each from totally different 

classes (i.e., one secernentea and one insect). This diversification will give us chance to 

observe whether similar species induce more similar splicing patterns to each other than to 

remote species in the taxonomy tree. In addition, we use two machine learning algorithms (i.e., 

NN and SVM), thus we will also have the chance to observe the difference in the performance 

of these two algorithms. 

The rest of this paper is organized as follows. Section 2 summarizes existing research work 

which had similar objectives to ours. Section 3 introduces the basic knowledge about splice 

site and describes the method and process of our approach. Section 4 describes the detailed 

aspects of our experimentation performed, and the results are presented and analyzed in 

Section 5. Section 6 concludes. 

2. Related Work 

Several researches have been conducted to determine whether species differ in terms of their 

splice sites. In a global analysis of alternative splicing between human and chimpanzee [2], it 

was found that both species have similar protein sequences for enzyme GSTO2, but their 

splice sites were different, resulting in slightly varying enzymes. This difference in alternative 

splicing between human and chimpanzee causes variance of functionality such as signal 

transduction and cell death. Even if the RNA sequences are similar, splice site selections can 
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vary and this would cause species variation. Barash et al. [3] proposed a new way to find 

alternative splice sites, which looks for constant patterns that define splice sites by 

investigating the special meaning of sequence codes in 600 nucleotides around the plausible 

boundary of splice sites. This approach aimed to identify mutation-verified sequences as the 

biological rule of splicing patterns by consulting hundreds of RNA features in the assembly 

generation of biological complex. Greaser et al. [12] found the difference between rat and dog, 

in genes N2B and N2BA, that even though the gene sequences are similar, different splice 

sites exist, causing performance variation on passive tension in cardiac muscles. Bothwell et al. 

[13] observed species-specific difference in gene expression and splice-site choice in gene 

Inpp5b, having similar sequences but varying splice sites between human and rat. Overall, 

these researches provide evidence  that splice sites are species dependent and the nucleotides 

that make up the boundary of the splice sites play an important role in RNA splicing. 

On the other hand, some researches have used machine learning techniques to predict 

unclassified splice sites. Hebsgaard et al. [6] used artificial neural network combined with the 

concept of rule-based systems to predict the splice site in Arabidopsis thaliana. They applied 

factors such as confidence value and distance between potential splice sites, and as a result, 

managed to surpass the accuracy of other predicting models. Sonnenburg et al. [7] applied 

SVM in this same effort of splice site prediction. They employ weighted degree kernel method 

which turned out well suited for the genome-wide recognition of splice sites in Caenorhabditis 

elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. This 

approach claimed higher accuracy prediction rate which was unparalleled in terms of splice 

site prediction upon its release.  

KBANN [4][5] was also an earlier effort that attempted splice site prediction. It combined 

domain knowledge with neural network and managed to reduce the amount of time and 

training data required to reach optimal classification as compared to an unmodified neural 

network. It has been later enhanced to produce more comprehensible deliverables [15]. 

Although KBANN showed lower error rates even with small examples than the original neural 

networks, the resulting classifiers are not comprehensible because we cannot read the rules 

themselves but only see the output. To make the rules more comprehensible by human, NofM 

[15] extracts comprehensive rules from KBANN, but at the price of lower accuracy. Similarly, 

other classification algorithms such as k-nearest neighbor (k-NN), Markov chains, and 

feature-based classification might have been used. Deshpande and Karypis [16] compared the 

performance of these algorithms using the same data set, concluding that SVM was the best 

fitted one for gene sequence prediction.  

In yet another direction, some approaches have tried to create databases for collecting 

information about splice sites and correcting errors on previous splice site records [17]. 

3. Methods 

This section explains the problem of recognizing splice site and presents our approach to 

dealing with this problem. As the basic background knowledge, a brief expository discussion 

spanning the central dogma, gene expression and transcription is presented first. 

3.1 Background – Central Dogma and RNA Splicing 

The central dogma is the agreed upon framework for understanding the transfer of information 

within and in between living organisms. There are three major classes of building blocks 

(biopolymers) that govern this transfer of information: DNA, RNA and proteins. Although 
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there are nine conceivable direct information transfers among them, three of those general 

transfers are believed to occur naturally in most cells [18], called the central dogma of 

molecular biology (see Fig. 1). 

The three transfers are (1) DNA replication where the DNA is copied, (2) transcription 

where DNA information is transcribed to mRNA, and (3) translation where proteins are 

synthesized using the information in mRNA. Transcription, simply speaking, is the process of 

making RNA copies from DNA. It uses the template strand, which is the non-coding DNA 

strand as a blueprint for the RNA molecule. An enzyme, RNA polymerase, performs this 

process by growing RNA molecule chain by adding one RNA nucleotide at a time. The 

product of transcription synthesizes premature messenger RNA (pre-mRNA). This 

pre-mRNA requires some extra processing in order to become mRNA, and eventually is 

translated into a final product. Among the several steps involved in the post-processing of the 

pre-mRNA, the one that is central to our research is RNA splicing. 
 

 

Fig. 1. The central dogma 

RNA splicing consists of the removal of introns and the formation of the final mRNA 

molecule by joining the exons together (see Fig. 2). Introns, actually derived from in 

intragenic regions, refer to the regions in the gene which are believed not to be decoded to 

produce proteins. Exons are the regions which contain the important codes for producing 

proteins [19]. The removal of introns is achieved through a series of reactions which are 

facilitated by the spliceosome. There are two types of splicing: canonical splicing and 

non-canonical splicing. Canonical splicing is known to account for around 99% of all the 

splicing, and is defined by the removal of introns that contain ‘GU’ nucleotides at the acceptor 

sites and ‘AG’ at the donor sites. Non-canonical splicing, known to account for the remaining 

rare 1% of all splicing, occurs when the minor spliceosome excises introns with different 

splice sites [20]. After the introns are excised, exons are combined in order to form the mRNA 

molecule. This molecule is then ready to be translated into a protein [21]. 

Recognition of these splice sites, i.e., the boundaries that exist between the exons and 

introns, is an important factor in the production of proteins, hence in the prediction of protein 

structures, which is the key to the determination of the protein functions. A great deal of 

research has been conducted in this area, e.g., alternative splicing. Alternative splicing denotes 

the process in which pre-mRNA exons are joined in a number of alternative ways during the 

concluding part of RNA splicing. The result of this process is various forms of proteins that are 

in existence [22]. 
 

 

Fig. 2. RNA splicing of introns and exons 
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3.2 Hypothesis and Proposed Solution 

Our aim is to show the difference in DNA sequence among various species by applying each 

data set for each species to the machine learning algorithms, and show the comparisons 

between algorithms and the difference in DNA sequence among various species for 

compensating the defect of the existing studies. Through experimentation, therefore, we wish 

to prove the hypothesis, “If the pattern of DNA sequence around the boundary sites are related 

to the species type, then the accuracy of boundary prediction will be increased by dividing the 

training sets according to the species”. We choose the length of the gene sequence to be 60, 

because this number has been known to be sufficient enough to produce promising accuracy in 

the previous approaches [4][5][15]. 

Classification or supervised learning aims to produce a concept description inherent in data 

that accurately predicts a certain target or class for. In our experiment, we will use standard 

techniques such as NN and SVM, independently, in order to extract rules. We have chosen 

these two techniques among others because they have been the most popular baseline 

algorithms in many similar approaches, and it makes possible to confirm our approach is 

proper for predicting splice sites by having at least two techniques. With selected machine 

learning techniques, we will generate two kinds of classifiers: (1) classifiers of each species 

train-set, and (2) classifiers of mixed species train-set. Each train-set of one species is 

composed of the information about around 3,000 classified splice sites, and mixed species 

train-set is composed of the same ratio from each train-set of species. Similarly, each test-set is 

composed of the information about around 1,000 classified splice sites to verify after 

extracting classifiers. As the result, there are (n+1) train-sets (i.e., one set for each of n species 

plus one set of mixed species), and n test-sets (i.e., one set for each species). Mixed test-set is 

not required because valuable meaning cannot be inferred by testing with mixed species in 

proving our hypothesis. In this experiment, we generate 2n classifier models with train-sets, of 

which n models use NN and the other n models use sequential minimal optimization (SMO), 

which is a practical implementation of SVM on the WEKA tool [23], as shown in Fig. 3. 
 

 

Fig. 3. The proposed process 

3.3 Verification Model 

To prove the hypothesis, we need to show two main points in our experiment. First, it is 
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required to see that using machine learning techniques (such as NN and SMO) is proper to 

predict splice sites in general by looking average values of accuracies in testing with their own 

species test-set (e.g., using human test-set for human classifiers). By showing high enough 

accuracy in testing with their own species, we can say that classifiers have been generated 

properly to predict splice sites for own species. 

After confirming that each rule has enough accuracy for its own species, the next process is 

to check how accuracy becomes different when testing with other species test-sets (e.g., using 

mouse test-set for human classifiers). If the accuracy is decreased, it implies that there may be 

features in splice sites based on species. Having extracted accuracy for each case, it is possible 

to see overall changes to infer features on species in splice sites. This process is described in 

the upper box (indicated by ‘*’) in Fig. 4. With combined species data, it also follows same 

process in Fig. 3 to extract a combined species classifier. However, this classifier would be 

used to compare accuracies by testing with test-set of each species to look how much 

difference of predicting splice sites among selected species. The diagram of this process is 

described as the lower box (indicated by ‘**’) in Fig. 4. 

By comparing the two ways mentioned above, it is possible to look splice sites’ features 

based on species. Consequently, comparing the result will directly verify our hypothesis. 
 

 

Fig. 4. Verification of the process 

4. Experimentation 

The experiment was conducted using WEKA (Waikato Environment for Knowledge 

Analysis), a machine-learning workbench implemented in Java [23]. It provides a collection of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2791 

algorithms for analyzing data and building predictive concept descriptions, and tools to 

visualize data. Two algorithms were used in our experiment: (1) SMO, which is a practical 

implementation of SVM on WEKA; (2) multilayer perceptron neural network. 

4.1 Data Preparation 

Our experimental data sets were obtained from University of California Santa Cruz (UCSC) 

data repository [24]. The data sets represent gene sequences of two mammals (human and 

mouse), one insect (D.melanogaster), and one nematode (C.elegans), that is, four species in 

total. 4,200 gene sequences were retrieved for each species, 3,150 of which were used for 

training and 1,050 used for testing. 

The UCSC database is chosen for retrieving gene sequences. In this database, four species 

are selected that contains enough splice sites data: human, mouse, C.elegans, and 

D.malenogaster. Note that among the four species, human and mouse belong to the same class 

(i.e., mammal). This would make the experimental results to include more about species’ 

features. 

We have retrieved splicing boundary sites from refFlat.txt file in the UCSC database on 

each species which contains gene translation information. Fig. 5 shows the scheme of 

refFlat.txt file, and Fig. 6 illustrates an example. 
 

Attribute Type Description 

geneName String Name of gene as it appears in Genome Browser 

name String Name of gene 

chrom String Chromosome name 

strand char[1] + or – for strand 

txStart uint Transcription start position 

txEnd uint Transcription end position 

cdsStart uint Coding region start 

cdsEnd unit Coding region end 

exonCount uint Number of exons 

exonStarts uint[exonCount] Exon start position 

exonEnds unit[exonCount] Exon end position 

Fig. 5. The scheme of UCSC refFlat file 

 

 

Fig. 6. Example of refFlat.txt file 

The most important attributes in the scheme include “chrom”, “strand”, “exonCount”, 

“exonStarts”, and “exonEnds”. “chrom” is the name of chromosome which gene in contained, 



2792                                  Ahn et al.: Increasing Splicing Site Prediction by Training Gene Set Based on Species 

and “strand” means directionality of nucleic acid. “exonCounts” is the number exons that the 

gene contains, “exonStarts” is comma spliced array of position of each exon starts, and 

“exonEnds” is comma spliced array of position each exon ends. In other words, we can extract 

into specific data format by splicing gene sequence on each index of “exonStarts” and 

“exonEnds”. However, spliced gene sequence should be reversed and complemented (i.e., 

pairing A-T, G-C) if the value of “strand” is “-”. 

There are several conditions while extracting splice site information from refFlat.txt file. It 

requires to include verified genes that are from real name of chromosomes on each species 

(e,g., Chr1, Chr2, etc.), because genes from other chromosomes (e.g., ChrU) has a possibility 

of containing unverified gene information. Moreover, the value of “exonCount” in refFlat 

scheme should be larger than 2, unless it is impossible to extract boundary information of 

intron-to-exon (I/E) and exon-to-intron (E/I) splice sites. Finally, it is also necessary to filter 

out genes when the length of exon is less than 60 and the number of nucleotides between exons 

in the gene is less than 120. The reason of this exclusion process is to avoid overlapping of 

gene sequence data when extracting 60 around genes on ‘E/I’, ‘I/E’, and nothing significant 

(N) splice sites. See Fig. 7 for an illustration of the data format. 
 

 

Fig. 7. Format of the instance in data set 

The data format for each retrieved species contains three attributes: boundary type, instance ID, 

and gene sequence. Boundary type contains the class of the 30th position boundary location in 

the gene sequence, where it can be one of {I/E, E/I, N}. Again, ‘I/E’ represents the boundary 

from intron to exon, ‘E/I’ the boundary from exon to intron, and ‘N’ means “nothing 

significant”. Instance ID states identification number for each data for its uniqueness for 

experiment. Gene sequence contains 60 gene sequences and one boundary location, the 30th 

position and the classification of I/E, E/I, or N. As depicted in Fig. 7, this data set is an 

emulation of transcription, exon, and intron. 
 

 

Fig. 8. Portion of an ARFF file 

To select splice sites candidates based on the rules mentioned above, splice sites in a refFlat.txt 

file is sorted randomly for equal distribution on chromosomes by using Linux program called 
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“sort” with turning on random option flag. After selecting splice sites, they are sorted 

randomly again to make equal distribution. 

With selected splice site candidates, we can generate train-set and test-set ARFF files 

composed with about 1,000 and 3,500 records, respectively. As a result, part of the ARFF files 

will look like as illustrated in Fig. 8. Here, each training data contains 61 columns. First 

column is boundary mark which can be one of ‘I/E’, ‘E/I’ and ‘N’. Other 60-column attributes 

represent 60 nucleotides, which are deemed around splice sites. Each of these 60 columns 

contains one of {A, G, C, T}, where ‘A’ stands for Adenine, ‘G’ for Guanine, ‘C’ for Cytosine, 

and ‘T’ for Thymine. 

4.2 Process Execution and Verification 

According to the proposed process shown in Fig. 3, the training data is converted to the ARFF 

(attribute relation file format), which is accepted by WEKA, for each species. In addition, a 

combined species data set is generated from them, which is a data set that contains the same 

amount of data from each species. That is, this data set is composed of an “assortment” of all 

the species used, hence called the combined species data set. These training sets are fed into 

the two algorithms (i.e., NN and SMO) to generate predictive classification models 

(classifiers). That is, for each training set, we generate two classifiers based on the two 

algorithms, respectively, using WEKA [23]. 

After the predictive concept description is generated, we verify our hypothesis by the 

process shown in Fig. 4. We provide test data for each of the species used. To prove our 

hypothesis, we have to show two things. The first is that “the species classification is 

dependent on species type”. We do this by providing each species predictive classification 

model with the different species test data. We then compare the accuracy to determine this. 

The second is to show that “the accuracy of prediction can be increased by separating the 

classifiers for each species”. This is done by testing our merged species data set against test 

data for other species. We also test it against the combined species data set, which has the same 

characteristic as the merged species data set but composed of test data. We then compare the 

results with the previous species-specific accuracies, and then determine if this part of the 

hypothesis holds. 

5. Results and Discussion 

This section presents the results of the experiment, analyze the results, and discuss on the 

findings. 

5.1 Results and Analysis 

We measure the results in terms of the accuracies of the splice site prediction for the studied 

species. In the tables to follow, a shorthand convention is used: ‘NN’ for multilayer perceptron 

and ‘SMO’ for sequential minimal optimization in the captions. The captions read such as 

“Accuracy of <species>–<classifier> classifier”, where <species> means one of the four 

species used to train the classifier, and <classifier> means either NN or SMO. 

The results in Table 1 to Table 8 denote classifiers that were learned for the individual 

species, that is, Table 1 and Table 2 represent the classifiers learned from the human splice 

site data set, and the results contained in them represent the accuracies of the classifier being 

tested on the four species of our study (including human itself). Table 3 and Table 4 represent 

the C.elegans classifier and the results associated with testing the classifier on the four species. 

Similarly, Table 5 and Table 6 represent the D.melanogaster species, and Table 7 and Table 
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8 represents the mouse species. On the other hand, Table 9 and Table 10 represent classifiers 

that were learned from a data set that contained a combination of all four species, whose 

results represent the accuracies of testing these classifiers on the species in our study. 

Each table shows attributes that represent the statistics that govern the learned classifiers. 

True positive rate (TP rate) denotes the accuracy in the true identification of a splice site in a 

sequence. False positive rate (FP rate) denotes the false classifications of a splice site. 

Precision denotes the precise number of identified splice sites from the total number of splice 

sites. F-measure is a weighted average of the precision and recall. Finally, ROC area provides 

a confidence check on the accuracy of prediction of splice sites.Table 1 and Table 2 show that 

the learned human species classifier performs very well for predicting the splice sites in other 

species with the NN classifier, however it performs below 89% accuracy for the C.elegans 

species with the SMO classifier. Its highest splice site predictions are for the human and mouse 

species. 

Table 1. Accuracy of Human-NN classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.958 0.02 0.958 0.958 0.994 

C.elegans 0.91 0.058 0.915 0.91 0.987 

D.melanogaster 0.947 0.031 0.947 0.947 0.994 

Mouse 0.958 0.021 0.958 0.958 0.995 

 

Table 2. Accuracy of Human-SMO classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.937 0.031 0.937 0.937 0.964 

C.elegans 0.889 0.071 0.894 0.888 0.93 

D.melanogaster 0.929 0.042 0.93 0.928 0.957 

Mouse 0.944 0.028 0.944 0.944 0.969 

 

Table 3 and Table 4 show the learned classifiers for the C.elegans species. The accuracy for 

splice site prediction is highest for C.elegans and D.melanogaster, and below 89% for the rest 

with the least accuracy being for the human species. 
 

Table 3. Accuracy C.elegans-NN classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.863 0.088 0.875 0.863 0.979 

C.elegans 0.966 0.017 0.966 0.966 0.996 

D.melanogaster 0.909 0.058 0.913 0.907 0.99 

Mouse 0.865 0.083 0.871 0.859 0.981 

 

Table 4. Accuracy C.elegans-SMO classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.834 0.103 0.841 0.829 0.903 

C.elegans 0.95 0.026 0.951 0.95 0.971 

D.melanogaster 0.905 0.059 0.909 0.903 0.944 

Mouse 0.85 0.089 0.853 0.846 0.907 
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Table 5 and Table 6 show the D.melanogaster learned classifier and the results are above 90% 

for all species, with the least accuracy being for mouse and human species. Finally, Table 7 

and Table 8 show the learned classifiers for the mouse species. The splice site prediction is 

above 90% except for the C.elegans species. 
 

Table 5. Accuracy of D.melanogaster-NN classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.947 0.026 0.947 0.947 0.991 

C.elegans 0.946 0.028 0.948 0.946 0.994 

D.melanogaster 0.955 0.023 0.956 0.955 0.997 

Mouse 0.937 0.028 0.94 0.938 0.993 

 

Table 6. Accuracy of D.melanogaster-SMO classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.918 0.039 0.919 0.918 0.957 

C.elegans 0.927 0.039 0.929 0.927 0.959 

D.melanogaster 0.951 0.025 0.952 0.951 0.972 

Mouse 0.91 0.042 0.913 0.91 0.956 

 

Table 7. Accuracy of Mouse-NN classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.956 0.021 0.957 0.956 0.995 

C.elegans 0.893 0.071 0.901 0.893 0.984 

D.melanogaster 0.939 0.036 0.94 0.939 0.991 

Mouse 0.95 0.024 0.95 0.95 0.994 

 

Table 8. Accuracy of Mouse-SMO classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.927 0.036 0.927 0.927 0.962 

C.elegans 0.874 0.084 0.884 0.873 0.923 

D.melanogaster 0.913 0.052 0.915 0.913 0.948 

Mouse 0.935 0.032 0.936 0.935 0.962 

 

As for the combined species learned classifiers, Table 9 and Table 10 show that the accuracy 

results are above 90% for all species. The lowest species classified was the C.elegans, while 

the highest species classified was D.melanogaster. 
 

Table 9. Accuracy of combined species-NN classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.951 0.025 0.951 0.951 0.993 

C.elegans 0.95 0.026 0.951 0.95 0.991 

D.melanogaster 0.96 0.022 0.96 0.96 0.995 

Mouse 0.962 0.018 0.962 0.962 0.996 
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Table 10. Accuracy of combined species-SMO classifier 

Test Species TP Rate FP Rate Precision F-Measure ROC Area 

Human 0.924 0.038 0.924 0.924 0.958 

C.elegans 0.94 0.033 0.94 0.94 0.966 

D.melanogaster 0.936 0.034 0.936 0.936 0.962 

Mouse 0.937 0.032 0.937 0.937 0.965 

 

All  the true positive results obtained from our experiment for species specific classifiers are at 

80% true positive identification of splice sites for the worst case and best case being 96.6%. 

These high percentages are attributable to the inherent canonical features present in the 

genomic sequences, which account for about 95% of all the data. We believe this to be a 

reasonable and meaningful basis for comparison, from which to deduce several insights.  

Regarding the accuracy in predicting splice sites, the NN classifiers generally outpreforms 

the SMO classifiers. This can be observed from the overall results in both the true positive and 

the ROC area results shown in the tables. That is, the NN classifier is more capable of 

generating better splice site concept description.  

If we focus on the mammals (i.e., human and mouse), the true positive results obtained by 

their classifiers for the other species is similar to each other, that is, they exhibit similar 

patterns. They show 1%-difference in true positive classification. When looking at the other 

two species, we observe something different. When examining the C.elegans, for instance, the 

pattern seems to favor higher accuracy prediction for the same species and D.melanogaster, 

but poorer for mammals. For the case of D.melanogaster, the accuracy values are closer to the 

human overall results. From this, we can deduce that D.melanogaster is governed by a splice 

site pattern that is closer to humans than C.elegans. This can be further validated by the fact 

that 75% of human diseases genes and 50% of the protein sequence in D.Melanogaster are 

homologus [25]. Furthermore, when comparing Table 1 and Table 3, we can clearly validate 

the hypothesis that a difference between species in terms of splice site exists. Therefore, the 

accuracy of prediction could be increased through the combination of species having similar 

splice sites. 

5.2 Discussion 

From the experiment, we could argue that features of splice sites may be affected by species. 

However, it seems necessary to complement some part of experiment to identify exact features 

in further study. 

First, splice site data may not be equally distributed among all species in the world. In this 

paper, the four species consist of two mammals, one secernentea, and one insect. For this 

reason, our combined train-set could have been biased to have mammals splice site mainly. 

However, at the time of experiment, the UCSC database did not contain enough splice sites 

information in refFlat.txt file. Therefore, trying similar experiments with a variety of species 

cannot be done to specify features on splice sites. 

Second, selecting 60 nucleotide acids around boundary sites may not be enough to have 

species features. On related works, mechanism on selecting alternative splice sites uses around 

200 nucleotides to identify features. It is worth trying to generate classifiers with wider range 

of nucleotides around boundary sites. 

Third, it is necessary to narrow the scope to specify where the features come from. Making 

variance of splice sites was not done in our experiment. We only considered that 

non-canonical splice sites would contain species features for splice sites. However, most of 

them are canonical splice sites and the number of splice sites is too small to use machine 
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learning techniques. If large amount of non-canonical splice sites has been discovered, 

importing similar techniques could be possible to identify features. 

Finally, not only having high prediction for splice sites is, but finding 

human-understandable meaning is also important to meet the purpose of finding features. In 

this paper, the experiment used only the NN and SMO algorithms, which create complex 

models of “black box” that humans cannot interpret.  

6. Conclusion 

To conclude, the following points can be made from the experiment presented in this paper. 

First, although both NN and SMO show good accuracy results on splice sites, NN tends to 

show better performance than SMO. Second, most accuracy results show more than 95%, 

which justify that the method is appropriate to predict splice sites. Third, there is strong 

possibility that splice sites have features based on speices by comparing accuracy results 

among species classifiers. According to these points, prediction of splice sites can be enhanced, 

and finding new patterns of splice site that can solve more biological problems. 

There are various ways to improve the experiment as the future work. One is to observe the 

differences in prediction accuracy by changing the range of boundary sites in order to find the 

best way to increase accuracy. Possible ranges can be some serial sequences around splice 

sites, or sparse gene sequences which have meaningful features in biology. Another way to 

make our hypothesis stronger is to conduct similar experiments with much larger volume of 

species data. If splice site classifiers discover many patterns from this large data set, showing 

different accuracy results depending on species, it will support our hypothesis more strongly. 

Finally, developing algorithms that extract human-readable patterns would also improve the 

analytical power of our approach. 
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