• Title/Summary/Keyword: high-volume slag cement

Search Result 62, Processing Time 0.025 seconds

International Test Mock-up of the Self-Heating of Cement Developed using a Reducing Slag (환원슬래그를 이용하여 개발된 자기발열 시멘트의 해외 Mock-up Test 관한 연구)

  • Min, Tae-Beom;Choi, Hyun-Kuk;Kim, Hyeong-Cheol;Kim, Jae-Young;An, Dong-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.228-229
    • /
    • 2017
  • MOCK-UP TEST was conducted in the extreme region of the cement which was researched and developed by using the reducing slag Experimental results show that the basic properties (air volume, slump) are improved compared with the specimens using Mongolian cement. The compressive strength achieved the target strength (target strength: age 3day: 7MPa, age 7day 14MPa) and the hydration heat was about 8 ℃ higher than that of Mongolian cement products. Therefore, it is considered that the cement powders developed by our company showed the strength of concrete due to high hydration heat even at extreme temperatures.

  • PDF

Effect of Incineration Plant Ash on Fundamental Properties of High Volume Blast Furnace-Slag Mortar incorporating Recycled Aggregate Powder (소각장애시의 치환률 변화에 따른 순환골재 미분말 함유 고로슬래그 다량치환 모르타르의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Heo, Young-Sun;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.126-127
    • /
    • 2013
  • For the decades, various of materials were used to instead of cement as the high volume CO2 occurred during the process of cement manufacture. In this paper, incineration plant ash was used in the mortar which incorporating high volume of blast furnace slag. Water to binder ratio(W/B) is fixed as 50%,BS+RP's replacement ratio is fixed as 80%,and the replacement ratio of WA1 is range as 0,0.5,1,2,3,4,5%.For the fresh mortar, flow and chloride contents has been tested. For the hardened mortar, compressive strength at 3,7,28 days has been tested. the result shows that when the replacement ratio of WA1 is 0.5%,the chloride contents is less than 0,3 kg/m3,the flowability and strength also performed better than other replacement types of mortar.

  • PDF

Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement (고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가)

  • Kim, Hwang-Hee;Kang, Su-Man;Park, Jong-Sik;Park, Sang-Woo;Jeon, Ji-Hong;Lee, Jin-Hyung;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

Performance Characteristics of Mortar with High Volume SCM Depending on Combinations of FA and BS (혼화재 다량치환 상태에서 FA 및 BS의 혼합비율에 따른 모르타르의 품질특성)

  • Kim, Min-Sang;Song, Yuan-Lou;Park, Seong-Bae;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.126-127
    • /
    • 2016
  • In this research, the optimum combination of fly ash (FA) and blast furnace slag (BS) was deduced by analyzing the performance of high volume supplementary cementitious materials (SCMs) cement mortar depending on various combinations of cement, FA, and BS. As a result, increased workability was shown with increased the portion of FA, while air content, setting time, and compressive strength were decreased.

  • PDF

Effect of CBS-dust replacement rate on the Qualities of High Volume GGBFS Cement Bricks (CBS-dust 치환에 따른 고로슬래그 다량치환 시멘트 벽돌 품질에 미치는 영향)

  • Han, Jun-Hui;Han, Soo-Hwan;Kim, Su-Hoo;Yoon, Chi-Whan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.105-106
    • /
    • 2021
  • This study examines the performance of CBS-Dust for the utilization of cement bricks as alkali stimulants for furnace slag replacement binders. It converts the CBS-Dust substitution rate and the excess slag substitution rate. According to the analysis, when replacing CBS-Dust with 65~70 % of BS substitution rate and 7.5~10 % of CBS-Dust, it shows excellent performance as an alkali stimulant of BS' potential hydrophobic reaction, and it is expected to be effective for secondary products of BS replaced in large quantities.

  • PDF

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

Characteristics Of High Strength Concrete File with the High Powder Slag Cement using Vibration Mill (진동밀로 개질한 고로 슬래그 시멘트를 적용한 고강도 콘크리트 파일의 특성고찰)

  • You, Chang-Dal;Ryu, Deug-Hyun;Kim, Do-Kyun;Yoo, Dong-Woo;Min, Kyung-San;Kim, Sang-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.311-312
    • /
    • 2009
  • By applying the vibrating mill modified slag cement on the concrete pile, the higher compressive strength was measured in spite of its smaller powder volume as comparing its compressive strength with existing products' one. As the result of SEM image observation, it was found that the strength was improved by the decreased size and abundance of pore along with increased cement hydrate in the dense structure.

  • PDF

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

The Engineering Properties of High Fluidity mortar with High Volume Slag Cement (고유동 대량치환 슬래그 모르타르의 공학적 특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Min-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.12-20
    • /
    • 2017
  • This report presents the results of an investigation on the fundamental properties of mortars high fluidity high volume slag cement(HVSC) activated with sodium silicate($Na_2SiO_3$). The ordinary Portland cement(OPC) was replaced by ground granulated blast furnace slag(GGBFS) from 40% to 80% and calcium sulfoaluminate(CSA) was 2.5% or 5.0% mass. The $Na_2SiO_3$ was added at 2% and 4% by total binder(OPC+GGBFS+CSA) weight. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. The research carried out the mini slump, V-funnel, setting time, compressive strength and drying shrinkage. The experimental results showed that the contents of superplasticizer, V-funnel, setting time and drying shrinkage increased as the contents of CSA and $Na_2SiO_3$ increase. The compressive strength increases with and an increase in CSA and $Na_2SiO_3$. One of the major reason for these results is the accelerated reactivity of GGBFS with CSA and $Na_2SiO_3$. The maximum performance was CSA 5.0% + $Na_2SiO_3$ 4% specimens.

Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete (알칼리 자극제로서 미분시멘트와 순환골재가 고로슬래그 다량치환 콘크리트의 공학적 특성 및 미세구조에 미치는 영향)

  • Han, Min-Cheol;Lee, Hyang-Jae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.602-608
    • /
    • 2013
  • The aim of this study is to investigate experimentally the effect of the combination of fine particle cement with high Blaine fineness (FC) and recycled aggregates on the engineering properties and micro structure of high volume blast furnace slag (BS) concrete with 75% BS and 21 MPa. FC manufactured by particle classification at the plant with Blaine fineness of more than $7000cm^2/g$ was used as additional alkali activator for high volume blast furnace slag concrete made with recycled fine and coarse aggregates. FC was replaced by 15, 20 and 25% OPC. Test results showed that the incorporation of FC resulted in an increase in the compressive strength compared to BS concrete without FC by as much as 30% due to accelerated hydration and associated latent hydraulic reaction. It was found that the use of FC and recycled aggregates played an important role in activating BS for high volume BS concrete by offering sufficient alkali.