Browse > Article
http://dx.doi.org/10.12989/cac.2015.16.2.261

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis  

Kuo, Wen-Ten (Department of Civil Engineering, National Kaohsiung University of Applied Sciences)
Shu, Chun-Ya (Department of Civil Engineering, National Kaohsiung University of Applied Sciences)
Publication Information
Computers and Concrete / v.16, no.2, 2015 , pp. 261-274 More about this Journal
Abstract
This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.
Keywords
high-temperature catalysis; basic oxygen furnace slag; desulfurization slag; controlled low-strength materials; volume stability behavior;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beaver Valley Slag, "www.bvslag.com/SlagExpansion.pdf ".
2 Cengiz, D.A., Alaettin, K. and Umur, K.S. (2004), "Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash", Cement. Concrete. Res., 34(1), 99-102.   DOI
3 Chatterji, S. (1995), "Mechanism of expansion of concrete due to the presence of dead- burnt CaO and MgO", Cement. Concrete. Res., 25(1), 51-56.   DOI
4 Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J.L., Proux, O., Domasf, J. and Bottero, J.Y. (2007), "Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach", J. Hazard. Mater., 139(3), 537-542.   DOI
5 Chen, F. (2011), "Application of detection for stability of concrete in concrete quality evaluation", Fujian. Constr. Sci. Technol., 3, 47-48.
6 Hwang, C.L. (2010), High Performance Concrete Theory and Practice, Chans book, Taipei, Taiwan (in Chinese).
7 Ivanka, N. (2011), "Utilisation of steel slag as an aggregate in concrete", Mater. Struct., 44(9), 1565-1575.   DOI
8 Krittiya, K., Pitisan K., Taweechai S., Pongsak C. and Somnuk T. (2013), "Effect of free lime content on properties of cement-fly ash mixtures", Constr. Build. Mater., 38, 829-836.   DOI
9 Kuo, W.T. and Shu, C.Y. (2014), "Application of high-temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures", Constr. Build. Mater., 50, 463-470.   DOI
10 Li, C.M. and Li, W.J. (2005), "Discussion on quality and expansiveness of expansive material-magnesium oxide", Des. Hydroelectric. Power. Station., 21(3), 95-99.
11 Lizarazo-Marriaga, J., Claisse, P. and Ganjian, E. (2011), "Effect of steel slag and portland cement in the rate of hydration and strength of blast furnace slag pastes", J. Mater. Civil. Eng., 23(2), 153-160.   DOI
12 Lun, Y., Zhou, M., Cai, X. and Xu, F. (2008), "Methods for improving volume stability of steel slag as fine aggregate", J. Wuhan. Univ. Technol. - Mater. Sci. Ed., 23(5), 737-742.   DOI
13 Mahmoud, A. (2012), "Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates", Constr. Build. Mater., 26(1), 475-480.   DOI
14 Montenegro, J.M., Celemin-Matachana, M., Canizal, J. and Setien, J. (2013), "Ladle furnace slag in the construction of embankments: expansive behavior", J. Mater. Civil. Eng., 25(8), 972-979.   DOI
15 Motz, H. and Geiseler, J. (2001), "Products of steel slags an opportunity to save natural resources", Waste. Manage., 21(3), 285-293.   DOI
16 Qasrawi, H. (2009), "Use of low CaO unprocessed steel slag in concrete as fine aggregate", Constr. Build. Mater., 23(2), 1118-1125.   DOI
17 Mu, S.B., Sun, Z.Y. and Su, X.P. (2001), "A study on the microstructure and expanding mechanism of highly free-calcium oxide cements", J. Wuhan. Univ. Technol., 23(11), 27-30.
18 Naganathan, S., Razak, H.A. and Nadzrian, A.H. (2010), "Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash", Waste. Manage. Res., 28(9), 848-860.   DOI
19 Netinger, I. (2011), "Utilisation of steel slag as an aggregate in concrete", Mater. Struct., 44(9), 1565-1575.   DOI
20 Rafat, S. (2009), "Utilization of waste materials and by-products in producing controlled low-strength materials", Resour. Conserv. Recy., 54(1), 1-8.   DOI
21 Rodriguez, A., Gutierrez-Gonzalez, S., Horgnies, M. and Calderon, V. (2013), "Design and properties of plaster mortars manufactured with ladle furnace slag", Mater. Design., 52, 987-994.   DOI
22 Shen, D.H., Wu, C.M. and Du, J.C. (2009), "Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture", Constr. Build. Mater., 23(1), 453-461.   DOI
23 Shi, C. and Qian, J. (2000), "High performance cementing materials from industrial slags-a review", Resour. Conserv. Recy., 29(3), 195-207.   DOI
24 Sivakumar, N., Hashim, A.R., Siti, N. and Abdul, H. (2012), "Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust", Mater. Design., 33, 56-63.   DOI
25 Svanera, M. (2012), "An innovative system for the re-use of slag from the electric arc furnace", Metall. Italiana., 2, 37-43.
26 Wang, G. and Emery, J. (2004), "Technology of slag utilization in highway construction", Proceedings of the Transportation Association on Annual Conference, Quebec, Canada.
27 Tareq, S. and Attar, A. (2013), "A mathematical model for predicting autoclave expansion for portland cement", Impact. Factor., 4(1), 110-116.
28 Vagelis, G.P. (2000), "Effect of fly ash on portland cement systems: Part II. high-calcium fly ash", Cement. Concrete. Res., 30(10), 1647-1654.   DOI
29 Wang, G. (2010), "Determination of the expansion force of coarse steel slag aggregate", Constr. Build. Mater., 24(10), 1961-1966.   DOI
30 Wang, G., Wang, Y. and Gao, Z. (2010), "Use of steel slag as a granular material: volume expansion prediction and usability criteria", J. Hazard. Mater., 184(1-3), 555-560.   DOI
31 Wang, X.Y. and Lee, H.S. (2014), "Prediction of compressive strength of Slag concrete using a blended cement hydration model", Comput. Concrete., 14(3), 247-262.   DOI
32 Wang, Y.K. (2008), "Effect of basic oxygen furnace slag on porous asphalt concrete", M.S. thesis, National Cheng Kung Univ., Taiwan (in Chinese).
33 Word steel Association, World steel in Figs. 2013. Belgium. ISBN: 978-2- 930069-73-9.
34 Wu, S., Xue, Y., Ye, Q. and Chen, Y. (2007), "Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures", Build. Environ., 42(7), 2580-2585.   DOI