• Title/Summary/Keyword: high-throughput system

Search Result 625, Processing Time 0.028 seconds

Biosensor System for the Detection of Agrichemicals and Its Applications (농약 검출을 위한 바이오센서 시스템 연구 및 그 응용)

  • Park, Tae-Jung;Yang, Min-Ho;Lee, Sang-Yup;Kim, Soo-Hyun
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.227-238
    • /
    • 2009
  • In the recent years, some organic toxic chemicals were used for obtaining high-yield productivity in agriculture. The undegraded pesticides may remain in the agricultural foods through atmosphere, water, and soil and cause public health problems to environmental resources and human beings even at very low concentrations. Small amounts of pesticides can affect a central nervous system, resulting in immunogenic diseases, infertility problems, respiratory diseases and born marrow diseases, which can lead even to death. Monitoring of the environmental pesticide is one of the important issues for the human well-being. Several kinds of biosensors have been successfully applied to the detection of agrichemical toxicity. Also, few platforms for biocide detection have been definitely developed for the degradation and reaction of pesticides. Biochip and electrochemistry experiments involve immobilizing a receptor molecule on a solid substrate surface, and monitoring its interaction with an analyze in a sample solution. Furthermore, nanotechnology can be applied to make high-throughput analyses that are smaller, faster and sensitive than conventional assays. Some nanomaterials or nanofabricated surfaces can be coupled to biomolecules and used in antibody-based assays and enzymatic methods for pesticide residues. The operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in agrichemical defection research and also describe the label-free biosensor for pesticides using various useful detection methods.

Development of an aequorin-based assay for the screening of corticotropin-releasing factor receptor antagonists (CRF1 길항제 스크리닝을 위한 에쿼린 기반 세포실험 개발연구)

  • Noh, Hyojin;Lee, Sunghou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7575-7581
    • /
    • 2015
  • Corticotropin-releasing factor(CRF), one of the stress driven neuropeptides, was widely proposed to influence hair loss and re-growth. For the development of receptor antagonists, the screening system based on intracellular calcium signal process was developed and optimized. The aequorin parental cells were transfected with CRF1 receptor and alpha 16 promiscuous G protein cDNA to establish HEK293a16/hCRF1, a stable cell line for the human CRF1 receptor. In HEK293a16/hCRF1 cells, the range of sauvagine dose response was 12-fold higher($EC_{50}:15.21{\pm}1.83nM$) than in the transiently expressed cells, hence essential conditions for the antagonist screening experiments such as the robust signals and high solvent tolerance were secured. The standard antagonists for the CRF1 receptor, antalarmin and CP154526, resulted $IC_{50}$ values of $414.1{\pm}5.5$ and $290.7{\pm}1.9nM$, respectively. Similar results were presented with frozen HEK293a16/hCRF1 cells. Finally, our HEK293a16/hCRF1 cells with the aequorin based cellular functional assay can be a model system for the development of functional cosmetics and modulators that can have a clinical efficacy on hair re-growth.

An Efficient TCP Buffer Tuning Algorithm based on Packet Loss Ratio(TBT-PLR) (패킷 손실률에 기반한 효율적인 TCP Buffer Tuning 알고리즘)

  • Yoo Gi-Chul;Kim Dong-kyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.121-128
    • /
    • 2005
  • Tho existing TCP(Transmission Control Protocol) is known to be unsuitable for a network with the characteristics of high RDP(Bandwidth-Delay Product) because of the fixed small or large buffer size at the TCP sender and receiver. Thus, some trial cases of adjusting the buffer sizes automatically with respect to network condition have been proposed to improve the end-to-end TCP throughput. ATBT(Automatic TCP fluffer Tuning) attempts to assure the buffer size of TCP sender according to its current congestion window size but the ATBT assumes that the buffer size of TCP receiver is maximum value that operating system defines. In DRS(Dynamic Right Sizing), by estimating the TCP arrival data of two times the amount TCP data received previously, the TCP receiver simply reserves the buffer size for the next arrival, accordingly. However, we do not need to reserve exactly two times of buffer size because of the possibility of TCP segment loss. We propose an efficient TCP buffer tuning technique(called TBT-PLR: TCP buffer tuning algorithm based on packet loss ratio) since we adopt the ATBT mechanism and the TBT-PLR mechanism for the TCP sender and the TCP receiver, respectively. For the purpose of testing the actual TCP performance, we implemented our TBT-PLR by modifying the linux kernel version 2.4.18 and evaluated the TCP performance by comparing TBT-PLR with the TCP schemes of the fixed buffer size. As a result, more balanced usage among TCP connections was obtained.

40Gb/s Foward Error Correction Architecture for Optical Communication System (광통신 시스템을 위한 40Gb/s Forward Error Correction 구조 설계)

  • Lee, Seung-Beom;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • This paper introduces a high-speed Reed-Solomon(RS) decoder, which reduces the hardware complexity, and presents an RS decoder based FEC architecture which is used for 40Gb/s optical communication systems. We introduce new pipelined degree computationless modified Euclidean(pDCME) algorithm architecture, which has high throughput and low hardware complexity. The proposed 16 channel RS FEC architecture has two 8 channel RS FEC architectures, which has 8 syndrome computation block and shared single KES block. It can reduce the hardware complexity about 30% compared to the conventional 16 channel 3-parallel FEC architecture, which is 4 syndrome computation block and shared single KES block. The proposed RS FEC architecture has been designed and implemented with the $0.18-{\mu}m$ CMOS technology in a supply voltage of 1.8 V. The result show that total number of gate is 250K and it has a data processing rate of 5.1Gb/s at a clock frequency of 400MHz. The proposed area-efficient architecture can be readily applied to the next generation FEC devices for high-speed optical communications as well as wireless communications.

Fluorescence Assay for High Efficient Mass Screening of the Herbicides Inducing Rapid Membrane Peroxidation (막과산화를 신속히 유발하는 제초제의 고효율 대량스크리닝을 위한 형광검정법)

  • Kim, Jin-Seog;Kwon, Ok Kyung
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.308-314
    • /
    • 2015
  • This study was conducted to establish a fluorescence assay system for high efficient mass screening of the herbicides causing rapid membrane peroxidation, based on the fact that peroxide in cellular leakage could be fluorometrically determined through the fuorescent compounds formed after reacting with homovanillic acid (HVA) and peroxidase (HRP). The assay procesure established in this study was as follows. Only single disc (4 mm diameter) excised from cucumber cotyledon is placed on the well containing test solution ($200{\mu}L$) with 96-well microplate. The plate is shaking-incubated for 8 h under light condition. Then after removing the cucumber disc, HVA and HRP are supplied in the medium buffer and incubated for 5 min at room temperature. Fluorescence values are determined at Ex 320 nm/Ex 425 nm. The higher fluorescence values are obtained in the treatment of chemical having higher herbicidal activity. Using this assay with 96-well microplates, a large number of herbicides inducing rapid membrane peroxidation seemed to be screened more efficiently than spectrophotometric microtiter assay reported previously.

The Effects of Cesium, Strontium and Cobalt on Cell Toxicity in the 2D and 3D Cell Culture Platforms (단층 및 입체 세포배양환경에서 세슘, 스트론튬 및 코발트가 세포 독성에 미치는 영향 분석)

  • Kim, Gi Yong;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • Currently, there are 442 operating nuclear power plants in the world, and 62 more are under construction. According to this reasoning, the treatment of radioactive waste is important to prevent the environmental ecosystem including humans, animals, and plants. Especially, a leakage of radioactive waste causes not only regional problem but also serious global one. In this study, we demonstrate the effect of radioisotopes (e.g., cesium, strontium, and cobalt) on a 3D culture cell. To develop the 3D cell culture system, we used a 96-well-culture plate with biocompatible agarose hydrogel. Using this method, we can perform the 3D cell culture system with three different cell lines such as HeLa, HepG2, and COS-7. In addition, we conducted a cell viability test in the presence of radioisotopes. Interestingly, the 3D morphological cells showed 42% higher cell viability than those on the 2D against cesium. This result indicates that the 3D platform provides cells morphological and physiological characteristic similar to in vivo grown tissues. Moreover, it overcomes the limitation of conventional cell culture system that can't reflect in vivo systems. Finally, we believe that the proposed approach can be applied a new strategy for simple high-throughput screening and accurate evaluation of metal toxicity assay.

DFT-based Channel Estimation Scheme for Sidelink in D2D Communication (D2D 통신에서 사이드링크를 위한 DFT 기반 채널 추정 기법)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.22-31
    • /
    • 2015
  • Recently, 3rd Generation Partnership Project (3GPP) has developed device-to-device (D2D) communication to cope with the explosively increasing mobile data traffic. The D2D communication uses sidelink based on single carrier-frequency division multiple access (SC-FMDA) due to its low peak-to-average power ratio (PAPR). In addition, demodulation reference signal (DMRS) is designed to support multiple input multiple output (MIMO). In this paper, we propose the DFT-based channel estimation scheme for sidelink in D2D communication. The proposed scheme uses the 2-Dimensional Minimum Mean Square Error (2-D MMSE) interpolation scheme for the user moving at a high speed. We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced system. Simulation results show that the proposed channel estimation scheme can improve signal-to-interference-plus-noise ratio (SINR), throughput and spectral efficiency of conventional scheme.

Load Balancing of Unidirectional Dual-link CC-NUMA System Using Dynamic Routing Method (단방향 이중연결 CC-NUMA 시스템의 동적 부하 대응 경로 설정 기법)

  • Suh Hyo-Joon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.557-562
    • /
    • 2005
  • Throughput and latency of interconnection network are important factors of the performance of multiprocessor systems. The dual-link CC-NUMA architecture using point-to-point unidirectional link is one of the popular structures in high-end commercial systems. In terms of optimal path between nodes, several paths exist with the optimal hop count by its native multi-path structure. Furthermore, transaction latency between nodes is affected by congestion of links on the transaction path. Hence the transaction latency may get worse if the transactions make a hot spot on some links. In this paper, I propose a dynamic transaction routing algorithm that maintains the balanced link utilization with the optimal path length, and I compare the performance with the fixed path method on the dual-link CC-NUMA systems. By the proposed method, the link competition is alleviated by the real-time path selection, and consequently, dynamic transaction algorithm shows a better performance. The program-driven simulation results show $1{\~}10\%$ improved fluctuation of link utilization, $1{\~}3\%$ enhanced acquirement of link, and $1{\~}6\%$ improved system performance.

A Mobility Supporting MAC Protocol to Improve Handover Performance in IEEE 802.16j Multi-hop Relay Networks (IEEE 802.16j 멀티 홉 릴레이 네트워크에서의 핸드오버 성능 향상을 위한 이동성 지원 MAC 프로토콜)

  • Yang, Hyeon-Chae;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.437-452
    • /
    • 2008
  • IEEE 802.16j MR networks introduce RSs (Relay Stations) within the IEEE 802.16 system in order to enhance the data throughput and extend the coverage. However, the current standardization defines that the BS (Base Station) controls MS's (Mobile Station's) handover, not only it induces the large signaling overhead but also handover latency could increase. In this paper, we propose a handover protocol in the MR networks where the high capability RSs that can process the MS's control functions are deployed. First, we classify the handover scenarios for the MR networks with the high capability RSs. Then, we define the MAC handover procedure, corresponding MAC management messages and the transmission routes for the proposed messages so that an 802.16e MS can perform seamless handover without noticing it is attached to an MR network. The simulation results show that the proposed handover protocol not only reduces the MAC management message overhead transferred through the wireless links compared to IEEE 802.16j/D1, which is the current standard for MR networks, but also performs the rapider and more secure MS handover than IEEE 802.16e and IEEE 802.16j/D1.

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels

  • Nguyen, Lan Phuong;Nguyen, Huong Thi;Yong, Hyo Jeong;Reyes-Alcaraz, Arfaxad;Lee, Yoo-Na;Park, Hee-Kyung;Na, Yun Hee;Lee, Cheol Soon;Ham, Byung-Joo;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.909-920
    • /
    • 2020
  • Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.