Browse > Article

Biosensor System for the Detection of Agrichemicals and Its Applications  

Park, Tae-Jung (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the Biocentury, KAIST)
Yang, Min-Ho (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the Biocentury, KAIST)
Lee, Sang-Yup (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the Biocentury, KAIST)
Kim, Soo-Hyun (Department of Mechanical Engineering, KAIST)
Publication Information
KSBB Journal / v.24, no.3, 2009 , pp. 227-238 More about this Journal
Abstract
In the recent years, some organic toxic chemicals were used for obtaining high-yield productivity in agriculture. The undegraded pesticides may remain in the agricultural foods through atmosphere, water, and soil and cause public health problems to environmental resources and human beings even at very low concentrations. Small amounts of pesticides can affect a central nervous system, resulting in immunogenic diseases, infertility problems, respiratory diseases and born marrow diseases, which can lead even to death. Monitoring of the environmental pesticide is one of the important issues for the human well-being. Several kinds of biosensors have been successfully applied to the detection of agrichemical toxicity. Also, few platforms for biocide detection have been definitely developed for the degradation and reaction of pesticides. Biochip and electrochemistry experiments involve immobilizing a receptor molecule on a solid substrate surface, and monitoring its interaction with an analyze in a sample solution. Furthermore, nanotechnology can be applied to make high-throughput analyses that are smaller, faster and sensitive than conventional assays. Some nanomaterials or nanofabricated surfaces can be coupled to biomolecules and used in antibody-based assays and enzymatic methods for pesticide residues. The operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in agrichemical defection research and also describe the label-free biosensor for pesticides using various useful detection methods.
Keywords
agrichemical biosensor; pesticide detection; biomolecular interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, J. S. (2005), MRLs for pesticides in foods, Korea Food & Drug Administration, Seoul, Korea
2 Lee, Y.-S., B.-H. Lee, and J.-H. Chun (1995), A study on the remaining concentration and toxicity of phosphates and carbamate insecticides by enzyme inhibition reactions in Nonsan, Chungnam, J. Kor. lnd. Eng. Chem. 37, 1755-1791
3 Mulchandani, A., P. Mulchandani, and W. Chen (1999), Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on inlmobilized organophosphorus hydrolase, Anal. Chem. 71, 2246-2249   DOI   ScienceOn
4 Xu, S., A. Wu, H. Chen, Y. Xie, Y. Xu, L. Zhang, J. Li, and D. Zhang (2007), Production of a novel recombinant Drosophila melanogaster acetylcholinesterase for detection of organophosphate and carbamate insecticide residues, Biomol. Eng. 24, 253-261   DOI   ScienceOn
5 Mulchandani, A., W. Chen, P. Mu1chandani, J. Wang, and K. R. Rogers (2001), Biosensors for direct determination of organophosphate pesticides, Biosens. Bioelectron. 16, 225-230   DOI   ScienceOn
6 Everett W. R. and G. A. Rechnitz (1998), Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem. 70, 807-810   DOI   ScienceOn
7 Ellman, G. L., K. D. Courtney, V. Andres, J. R., and R. M. Featherstone (1961), A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem, Pharmacol. 7, 88-95   DOI   ScienceOn
8 la Rosa, C. F. Pariente, L. Hemandez, and E. Lorenzo (1993), Detennination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate, Anal. Chim. Acta 295, 273-282   DOI   ScienceOn
9 Perez Pita, M. T., A. J. Reviejo, F, F. J. M. de Villena, and J. M. Pingarron (1997), Amperometric selective biosensing of dimethyl- and diethyldithiocarbamates based on inhibition processes in a medium of reversed micelles, Anal. Chim. Acta 340, 89-97   DOI   ScienceOn
10 Lin, Y., F. Lu, and J. Wang (2004), Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents, Electroanalysis 16, 145-149   DOI   ScienceOn
11 Cho, C. M., A. Mulchandani, and W. Chen (2004), Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos, Appl. Environ. Microbiol. 70, 4681-4685   DOI   ScienceOn
12 Minunni, M., P. Skladal, and M. Mascini (1994), A piezoelectric quartz crystal biosensor for atrazine, Life Chem. Rep. 11, 391-398
13 Neufeld, T., I. Eshkenazim E. Cohen, and J. Rishpon (2000), A micro flow injection electrochemical biosensor for organophosphorus pesticides, Biosens. Bioelectron. 15, 323-329   DOI   ScienceOn
14 Puchades, R. and A. Maquieira (1996), Recent developments in flow injection immunoanalysis, Crit. Rev. Anal. Chem. 26. 195-218
15 Penalva, J., R. Puchades, and A. Maquieira (1999), Analytical properties of immunosensors working in organic media. Anal. Chem. 71, 3862-3872   DOI   ScienceOn
16 Alvarez, M., A. Calle, J. Tamayo, L. M. Lechuga, A. Abad, and A. Montoya (2003), Development of nanomechanical biosensors for detection of the pesticide DDT, Biosens. Bioelectron. 18, 649-653   DOI   ScienceOn
17 Barzen, C., A. Grecht, and G. Gauglitz (2002), Optical multiple-analyte immunosensor for water pollution control. Biosens. Bioelctron. 17, 289-295   DOI   ScienceOn
18 Txchmelak, J., G. Proll, and G. Gauglitz (2004), Ultra-sensitive ful1y automatied immunoassay for detection of propanil in aqueous samples: steps of progress toward sub-nanogram per liter detection, Anal. Bioanal. Chem. 379, 1004-1012   PUBMED   ScienceOn
19 Guilbault, G. G., B. Hock, and R. Schmid (1992), A piezoelectric immunobiosensor for atrazine in drinking water. Biosnes. Bioelectron. 7, 411-419   DOI   ScienceOn
20 Horacek, J. and P. Skladal (1997), Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4- dichlorophenoxyacetic acid, Anal. Chim. Acta 347, 43-50   DOI   ScienceOn
21 Hu, S. Q., J. W. Xie, Q. H. Xu, K T. Rong, G. L. Shen, and R. Q. Yu (2003), A label-free e1ectrochemical immunosensor based on gold nanoparticles for detection of paraoxon, Talanta 61, 769-777   DOI   ScienceOn
22 Steegborn, C. and P. Skladal (1997), Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution, Biosens. Bioelectron. 12, 19-27   DOI   ScienceOn
23 Pribyl, J., M. Hepel, J. Halameka, and P. Sklada (2003), Development of piezoelectric immunosensors for competitive and direct determination of atrazine, Sens. Actuat. B 91, 333-341   DOI   ScienceOn
24 Dzantiev, B. B., A. V. Zherdev, M. F. Yulaev, R. A. Sitdikov, N. M. Dmitrieva, and I. Y. Moreva (1996), Electrochemical immunosensors for determination of the pesticides 2,4-dich1orophenoxyacetic and 2,4,5-tricho1orophenoxyacetic acids, Biosens. Bioelectron. 11, 179-185   DOI   ScienceOn
25 Dzantiev, B. B., E. V. Yazynina, A. V. Zherdev, Y. V. Plekhanova, A. N Reshetiv, S. C. Chang, and C. J. McNeil (2004), Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay, Sens. Actuat. B 98, 254-261   DOI   ScienceOn
26 Choi, S. S., S. H. Seo, D. G. Kang, H. J. Cha, and S. H. Yeom (2006), Enhancement of paraoxon biodegradation rate from recombinant Escherichia coli catalyst for bioremediation, 유기물자원화 14, 110-116
27 Skoulika, S. G., C. A. Georgiou, and M. G. Polissiou (2000), Rapid quantitation analysis of organophosphorus pesticide formulations by FT-Raman spectroscopy, Internet J. Vib. Spec. 4, 3
28 Soldatkin, A. P., D. V. Gorchkoh, C. Martelet, and N. Jaffrezi-Renault (1997), New enzyme potentiometric sensor for hypochlorite species detection, Sens. Actuat. B 43, 99-104   DOI   ScienceOn
29 Hock, B., A. Dankwardt, K. Kramer, and A. Marx (1995), Immunochemical techniques : Antibody production for pesticide analysis. A review, Anal. Chim. Acta 311, 393-405   DOI   ScienceOn
30 Tanner, P. A. and K.-H. Leung (1996), Spectral interpretation and qualitative analysis of organophosphorus pesticides using FT-Raman & FT-IR spectroscopy, Appl. Spectrosc. 50, 565-571   DOI   ScienceOn
31 Dave, K. I., C. E. Miller, and J. R. Wild (1993), Characterization of. organophosphorous hydrolases and the genetic manipulation of. the phosphotriesterases from pseudomonas diminuta, Chem Biol. Intract. 87, 55-68   DOI   ScienceOn
32 Besombes, J., S. Cosnier, P. Labbe, and G. Reverdy (1995), A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides, Anal. Chim. Acta 311, 255-263   DOI   ScienceOn
33 Hill, A. S. J. V. Mei, C. Yin, B. S. Ferguson, and J. H. Skerritt (1991), Determination of the insect growth regulator methoprene in wheat grain and milling fractions using an enzyme immunoassay, J. Agric. Food Chem. 39, 1882-1886   DOI
34 Irene Home, Xinghui Qiu, David L. Ollis, Robyn J. Russell, and John G. Oakeshott (2006), Functional effects of amino acid substitutions within the large binding pocket of the phosphotriεsterase OpdA from Agrobacterium sp. P230, FEMS Microbiol. Lett. 259, 187-194   DOI   ScienceOn
35 Rekha, K., M. D. Gouda, M. S. Thakur, and N. G. Karanth (2000), Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring. Biosens. Bioelectron. 15, 499-502   DOI   ScienceOn
36 Jenkina, A. L., R. Yin, and J. L. Jensen (2001), Molecularly imprinted polymer sensors for pesticide and insecticide detection in water, Analyst 126, 798-802   DOI   ScienceOn
37 Sirvent, M. A., A. Merkoci, and S. Alegret (2001), Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology, Anal, Chim, Acta 442, 35-44   DOI   ScienceOn
38 Yang, H., P. D. Carr, S. Y. McLoughlin, J. W. Liu, I. Home, X. Qiu, C. M. J. Jeffries, R. J. Russell, J. G. Oakeshott, and D. L. Ollis (2003), Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution, Protein Eng. 16, 135-145   DOI   PUBMED   ScienceOn
39 Seki, A., F. Ortega, and J. L. Marty (1996), Enzyme sensor for the detection of herbicides inhibiting acetolactate synthase, Anal. Lett. 29, 1259-1271   DOI   ScienceOn
40 Martinez, M. T., Y.-C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, and J. Bokor (2009), Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors, Nano Lett. 9, 530-536   DOI   ScienceOn
41 Trojanowicz M. (2002), Determination of pesticides using electrochemical enzymatic biosensors, Electroanalysis 14, 1311-1328   DOI   ScienceOn
42 Choi, B. G., H. Park, T. J. Park, D. H. Kim, S. Y. Lee, and W. H. Hong (2009), Development of the electrochemical biosensor for organophosphate chemicals using CNT/ ionic liquid bucky gel e1ectrode, Electrochem. Commun. 11, 672-675   DOI   ScienceOn
43 Noguer, T., A. Gradinaru, A. Cincu, and J. L. Marty (1999), A new disposable biosensor for the accurate and sensitive detection of ethylenebis (dithiocarbamate) fungicides, Anal. Lett. 32, 1723-1738   DOI   ScienceOn
44 Szekacs, A., N. Trummerb, N. Adanyi, M. Varadi, and I. Szendro (2003), Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection, Anal. Chim. Acta 487, 31-42   DOI   ScienceOn
45 Jimenez, A. M. and M. J. Navas (1997), Chemiluminescent methods in agro-chemical analysis, Crit. Rev. Anal. Chem. 27, 291-305   DOI   ScienceOn
46 Mulchandani, P., W. Chen, and A Mulchandani (2001), Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environ. Sci, Technol. 35, 3562-2565   DOI   ScienceOn
47 Kok, F. N. and V. Hasirci (2004), Determination of binary pesticide mixtures by an acetylcholinesterasecholineoxidase biosensor, Biosens. Bioelectron. 19, 661-665   DOI   ScienceOn
48 Kindervater, R., W. Kunnecke, and R. D. Schimid (1990), Exchangeable immobillized reactor for enzyme inhibition tests in flow-injection analysis using a magnetic device. Detennination of pesticides in drinking water, Anal. Chim. Acta 234, 113-117   DOI   ScienceOn
49 Kroger, S., S. J. Setford, and A. P. F. Tumer (1998), Immunosensor for 2,4-dichlorophenoxyacetic acid in aqueous/organic solvent soil extracts, Anal. Chem. 70, 5047-5053   DOI   ScienceOn
50 Gonzalez-Martinez, M. A., S. Morais, R. Puchades, A. Maquieira, A. Abad, and A. Montoya (1997), Monoclonal antibody-based flow-through immunosensor for analysis of carbaryl, Anal. Chem. 69, 2812-2818   DOI   ScienceOn
51 Zeravik, J., T. Ruzgas, and M. Franek (2003), A highly sensitive flow-through amperometric immunosensor based on the peroxidase chip and enzyme-channeling principle, Biosens. Bioelectron. 18, 1321-1327   DOI   ScienceOn
52 Mulchandani, A., P. Mulchandani, I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agεnts using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode, Anal. Chem. 70, 4140-4145   DOI   ScienceOn
53 Takayama, K., S. Suye, K. Kuroda, M. Ueda, T. Kitaguchi, K. Tsuchiyama, T. Fukuda, W. Chen, and A. Mulchandani (2006), Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae, Biotechnol. Prog. 22, 939-943   DOI   ScienceOn
54 Jaffrezic-Renault, N. (2001), New trends in biosensors for organophosphorus pesticides, Sensors 1, 60-74   DOI
55 King, J. W. and K. S. Nam (1996), in Residue Analysis in Food Safety (R. C. Beier and L. H. Stanker, eds), ACS Symposium Series 621, Americam Chemical Society, Washington
56 Rainina, E. I, E. N. Efremenco, S. D. Varfolomeyev, A. L. Simonian, and J. F. Wild (1996), The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins, Biosens. Bioelectron. 11, 991-1000   DOI   ScienceOn
57 Quintas, G., S. Garrigues, and M. de la Guardia (2004), FT-Raman spectrometry determination of Malathion in pesticide formulations, Talanta 63, 345-350   DOI   ScienceOn
58 Zheng, J., C. A. Constantine, L. Zhao, V. K. Rastogi, T.-C. Cheng, J. J. DeFrank, and R. M. Leblanc (2005), Molecular interaction between organophosphorus acid anhydrolase and diisopropylfluorophosphate, Biomacromolecules 6, 1555-1560   DOI   ScienceOn
59 Montensinos, T., S. P. Munguia, F. Valdez, and J. L. Marty (2001), Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents, Anal. Chim. Acta 431, 231-237   DOI   ScienceOn
60 Kandimalla, V. B. and H. X. Ju (2006), Binding of acetylcholinesterase to multiwall carbon nanotubecross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide, Chem. Eur. J. 12, 1074-1080   DOI   ScienceOn
61 Massei, F., F. Botre, G. Lorenti, G. Simonetti, F. Porcelli, G. Scibona, and C. Botre (1995), Plant tissue electrode for the determination of atrazine, Anal. Chim Acta 316, 79-82   DOI   ScienceOn
62 Pandey, P. C., R. W. Aston, and H. H. Weetall (1995), Tetracyanoquinodimethane mediated glucose sensor based on a self-assembling alkanethiollphospholipid bilayer, Biosens. Bioelectron. 10, 669-674   DOI   ScienceOn
63 Sawyer, L. D., B. M. McMahon, W. M. Newsome, and G. A. Parker (1990), in Pesticide and lndustrial Chemical Residues, 15th ed., AOAC : Champaign, Illinois
64 Grennan, K., G. Strachan, A. J. Porter, A. J. Killard, and M. R. Smyth (2003), Atrazine ana1ysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement, Anal. Chim. Acta 500, 287-298   DOI   ScienceOn
65 Ayyagari, M., S. Kametkar, R. Pande, K. A. Marx, J. Akkara, and D. L. Kaplan (1995), Chemiluminescencebased inhibition kinetics of alkaline phosphatase in the development of a pesticide biosensor, Biotechnol. Prog. 11, 699-703   DOI   ScienceOn
66 Meulenberg, E. P., W. H. Mulder, and P. G. Stocks (1995), Immunoassays for pesticides. Environ. Sci Tech. 29, 553-561   DOI   ScienceOn
67 Nugent, P. (1992), in Emerging Strategies for Pesticide Analysis (T. Caims and J. Sherma, eds), CRC Press, Boca Raton, Florida
68 Bucur, B., M. Dondoi, A. Danet, and J. L. Marty (2005), Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases. Anal. Chim. Acta 539, 195-201   DOI   ScienceOn
69 Karns, J. S., M. T. Muldoon, W. W. Mulbury, M. Derbyshire, and P. C. Kearn (1987), Use of microorganisms and microbial systems in the degradation of pesticide, ACS Symp. Ser. 334, 157-170
70 Mitchell, K. M. (2004), Acetylcholine and choline amperometric enzymε sensors characterized in vitro and in vivo, Anal. Chem. 76, 1098-1106   DOI   PUBMED   ScienceOn
71 Lotti, M. (1995), Cholinesterase inhibition: complexities in interpretation, Chin. Chem. 41, 1814-1818
72 Kandimalla, V. K., N. S. Neeta, N. G. Karanth, M. S. Thakur, K. R. Roshini, B. E. A. Rani, A. Pasha, and N. G. K. Karanth (2004), Regeneration of ethyl parathion antibodies for repeated use in inlmunosensor: a study on dissociation of antigens from antibodies, Biosens. Bioelectron. 20, 903-906   DOI   PUBMED   ScienceOn
73 Hill, C. M., F. Wu, T.-C. Cheng, J. J. DeFrank, and F. M. Raushel (2000), Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p-nitrophenyl phosphotriesters, Bioorgan. Med. Chem. Lett. 10, 1285-1288   DOI   ScienceOn
74 Im, H., X.-J. Huang, B. Gu, and Y.-K. Choi (2007), A dielectric-modulated field-effect transistor for biosensing, Nat. Nanotechnol. 2, 430-434   DOI   ScienceOn
75 Nunes, G. S., I. A. Toscano, and D. Barcelo (1998), Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays, Trends Anal. Chem. 17, 79-87   DOI   ScienceOn
76 Marty, J. L., N. Mionetto, T. Noguer, F. Ortega, and C. Roux (1993), Enzyme sensors for the detection of pesticides. Biosens. Bioelectron. 8, 273-280   DOI   ScienceOn
77 Lee, D., S. Lee, G. H. Seong, J. Choo, E. K. Lee, D.-G. Gwon, and S. Lee (2006), Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced raman spectroscopy, Appl. Spectrosc. 60, 373-377   DOI   ScienceOn
78 Stoycheva, M. (2002), Electrochemical evaluation of the kinetic parameters of a heterogeneous enzyme reaction in presence of metal ions. Electroanalysis 14, 923-927   DOI   ScienceOn
79 Alder, L., K. Greulich, G. Kempe, and B. Vieth (2006), Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS?, Mass Spectrom. Rev. 25, 838-865   DOI   ScienceOn
80 Killard, A. J., L. Micheli, K. Grennan, M. Franek, V. Kolar, D. Moscone, I. Palchetti, and M. R. Smyth (2001), Amperometric separation-free immunosensor for real-time environmental monitoring, Anal. Chim. Acta 427, 173-180   DOI   ScienceOn
81 Armenta, S., S. Garrigues, and M. de la Guardia (2007), Determination of iprodione in agrochemicals by IR & Raman spεctrometry, Anal. Bioanal. Chem. 387, 2887-2894   DOI   ScienceOn
82 Kalab, T. and P. Skladal (1995), A disposable amperometric immnosensor for 2,4-dichlorophenoxyacetic acid, Anal. Chim. Acta 304, 361-368   DOI   ScienceOn
83 Yang, C., N. Cai, M. Dong, H. Jiang, J. Li, C. Qiao, A. Mulchandani, and W. Chen (2007), Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates, Biotechnol. Bioeng. 99, 30-37   DOI   ScienceOn
84 Armenta, S., G. Quintas, S. Garrigues, and M. de la Guardia (2004), Determination of cyromazine in pesticide commercial formulations by vibrational spectrometric procedures, Anal. Chim. Acta 524, 257-264   DOI   ScienceOn
85 Gogol, E. V., G. A. Evtugyn, J. L. Marty, H. C. Budnikov, and V. G. Winter (2000), Amperometric biosensors based on Nafion coated screen-printed electrodes for the detεrmination of cholinesterase inhibitors, Talanta 53, 379-389   DOI   ScienceOn
86 Trajkovska, S., K. Tosheska, J. J. Aaron, F. Spirovski, and Z. Zdravkovski (2005), Bioluminescence determination of enzyme activity of firefly luciferase in the presence of pesticides, Luminescence 20, 192-196   DOI   ScienceOn
87 Boublik, Y., P. Saint-Aguet, A. Lougarre, M. Amaud, F. Villatte, S. Estrada-Mondaca, and D. Fournier (2002), Acetylcholinesterase engineering for detection of insecticide residues, Protein Eng. 15, 43-50   DOI   PUBMED
88 Thibeau, R. J., L. V. Haverbeke, and C. W. Brown (1978), Detection of water pollutants by laser excited resonance Raman spectroscopy; pesticides & fungicides, Appl. Spectrosc. 32, 98-100   DOI   ScienceOn
89 Preuss, M. and A. H. Halt (1995), Mediated herbicide inhibition in a PET biosensor, Anal. Chem. 67, 1940-1949   DOI
90 Noguer, T., B. Leca, G. Jeanty, and J. L. Marty (1999), Biosensors based on enzyme inhibition : detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides, Field Anal. Chem. Tech. 3, 171-178   DOI   ScienceOn
91 Jeanty B. and J. L. Marty (1994), Detection of paraoxon by continuous flow system based enzyme sensor, Biosens. Bioelectron. 13, 213-218   DOI   ScienceOn
92 Shao, C. Y., C. J. Howe, A. J. R. Porter, and L. A. Glover (2002), Novel cyanobacterial biosensor for detection of herbicides. Appl. Environ. Microbiol. 68, 5026-5033   DOI   ScienceOn
93 Cho, C. M., A. Mulchandani, and W. Chen (2006), Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides, Protein Eng. Des. Sel. 19, 99-105   DOI   ScienceOn
94 Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen (1997), Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase, Nat. Biotechnol. 15, 984-987   DOI   ScienceOn
95 Skoulika, S. G., C. A. Georgiou, and M. G. Polissiou (1999), Quantitative determination of fenthion in pesticide formulations by FT -Raman spectroscopy, Appl. Spectrosc. 53, 1470-1474   DOI   ScienceOn
96 Alak, A. M. and T. Vo-Dinh (1987), Surface-enhanced Raman spectrometry of organophosphorus chemical agents, Anal. Chem. 59, 2149-2153   DOI   ScienceOn
97 Mazzei, F., F. Botre, and C. Botre (1996), Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides, Anal. Chim. Acta 336, 67-75   DOI   ScienceOn
98 Cremisini, C., A. D. Sario, J. Mela, R. Pilloton, and G. Paleshci (1995), Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor. Anal. Chim. Acta 311, 273-280   DOI   ScienceOn
99 Andreescu, S., A. Avramescu, C. Bala, V. Magearu, and J.-L. Marty (2002), Detection of organophosphorus insecticides with immobilized acetylcholinesterasecomparative study of two enzyme sensors, Anal Bioanal. Chem. 374, 39-45   DOI   ScienceOn