• Title/Summary/Keyword: high-temperature property

Search Result 1,238, Processing Time 0.027 seconds

Analysis of anti-adhesion property in replication of patterns of sub-micrometers (Sub-micrometer 크기의 패턴의 복제시 발생되는 이형 특성의 분석)

  • Lee, Nam-Seok;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.940-944
    • /
    • 2003
  • With the increasing demand for plastic micro components, micro-/nano-molding using the mother stamper has received much attention. If the replication temperature is too high, the adhesion between the stamper and the polymer melt may deteriorate the surface quality of the replicated part, excessively wearing down the stamper. In this paper, an experimental method analyzes the temperature dependency of the anti-adhesion property between the actual stamper with patterns of sub-micrometer and the polymer melt. As a practical example, a correlation between the contact angle of the stamper and the surface quality of the molded substrates as a function of the replication temperature, respectively, was obtained quantitatively.

  • PDF

Effect of Molding Pressure on the Microstructure and Wear Resistance Property of Polycrystalline Diamond Compact (다결정 다이아몬드 컴팩트(PDC)의 미세조직 및 내마모 특성에 미치는 초기 성형 압력의 영향)

  • Kim, Ji-Won;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2015
  • This study investigated the microstructure and wear resistance property of HPHT(high pressure high temperature) sintered PDC(polycrystalline diamond compact) in accordance with initial molding pressure. After quantifying an identical amount of diamond powder, the powder was inserted in top of WC-Co sintered material, and molded under four different pressure conditions (50, 100, 150, $200kgf/cm^2$). The obtained diamond compact underwent sintering in high pressure, high temperature conditions. In the case of the $50kgf/cm^2$ initial molding pressure condition, cracks were formed on the surface of PDC. On the other hand, PDCs obtained from $100{\sim}200kgf/cm^2$ initial molding pressure conditions showed a meticulous structure. As molding pressure increased, low Co composition within PDC was detected. A wear resistance test was performed on the PDC, and the $200kgf/cm^2$ condition PDC showed the highest wear resistance property.

Application of Advanced Indentation System for Evaluati Tensile Property Degradation of Cr-Mo Steel (Cr-Mo 강의 열화도 평가를 위한 Advanced Indentation System의 응용)

  • Jang, Jae-Il;Choi, Yoel;Lee, Yun-Hee;Kwon, Dong-Il;Kim, Jeoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.231-236
    • /
    • 2001
  • A newly developed Advanced Indentation System (AIS), which is a portable and nondestructive system for evaluating tensile properties, was used to measure mechanical behavior of materials used under high temperature and pressure conditions. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. Aging effects of Cr-Mo and Cr-Mo-V steel at high temperature were simulated. Tensile properties including yield strength and tensile strength at various temperature are obtained from the test. For all test materials and conditions, the AIS-derived results were in good agreement with those from conventional standard test method. Examples of the test results ate given and potential applications of the AIS to assess the integrity of aging structures are briefly discussed.

  • PDF

Mechanical Property and Ductile-Brittle Transition Behavior of Ti-Nb-P Added Extra Low Carbon High Strength Steel Sheets (Ti-Nb-P 첨가 극저탄소 고강도 강판의 기계적 성질과 연성-취 천이거동)

  • Park J. J.;Lee O. Y.;Park Y. K.;Han S. H.;Chin K. G.
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.863-869
    • /
    • 2004
  • The purpose of this research is to investigate the mechanical property and ductile-brittle transition temperature of Ti-Nb-P added extra low carbon interstitial free steel having a tensile strength of 440 MPa. The mechanical property and transition temperature of hot rolled steel sheets were more influenced by the coiling temperature rather than by the small amount of alloying element. Further, at the same composition, the property of the specimen coiled at low temperature was superior to that obtained at higher coiling temperature. The fracture surface of 0.005C-0.2Si-1.43Mn steel coiled at $630^{\circ}C$ showed a ductile fracture mode at $-100^{\circ}C$, but coiling at $670^{\circ}C$ showed a transgranular brittle fracture mode at $-90^{\circ}C$. The galvannealed 0.006C-0.07Si-1.33Mn steel sheet annealed at $810^{\circ}C$ has tensile strength and elongation of 442.8 MPa and $36.6\%$, respectively. The transition temperature of galvannealed 0.006C-0.07Si-1.33Mn steel sheet was increased with a drawing ratio, and the transition temperature of the galvannealed 0.006C-0.07Si-1.33Mn steel was $-60^{\circ}C$ at a drawing ratio of 1.8

Study on Evaluation of High Temperature Degradation of Concrete using Ultrasonic Velocity Method (초음파 속도법을 이용한 콘크리트의 고온열화 평가에 대한 연구)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Kim, Hong-Seop;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.146-147
    • /
    • 2016
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. So, concrete at high temperature is evaluated mechanical properties for safety inspection. However, research of ultrasonic method is not much. Therefore, the purpose of this study is to NDT(non-destructive test) of 30, 70, 110MPa concrete exposed high temperature using ultrasonic pulse velocity.

  • PDF

NDT of Concrete Exposed High Temperature Using Ultrasonic Method (초음파법을 이용한 고온가열 콘크리트의 비파괴 평가)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Kim, Hong-Seop;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.24-25
    • /
    • 2016
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. So, concrete at high temperature is evaluated mechanical properties for safety inspection. However, research of ultrasonic method is not much. Therefore, the purpose of this study is to NDT(non-destructive test) of 30, 70, 110MPa concrete exposed high temperature using ultrasonic pulse velocity and amplitude.

  • PDF

Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method (유동층 화학기상증착법을 이용하여 제조된 열분해 탄화규소의 특성에 미치는 증착온도의 영향)

  • Kim, Yeon-Ku;Kim, Weon-Ju;Yeo, SungHwan;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.434-440
    • /
    • 2014
  • Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at $1500-1650^{\circ}C$ has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at $1500^{\circ}C$ obtains nearly stoichiometric composition, the composition of the SiC layer coated at $1300-1400^{\circ}C$ shows discrepancy from stoichiometric ratio(1:1). $3-7{\mu}m$ grain size of SiC layer coated at $1500^{\circ}C$ is decreased to sub-micrometer (< $1{\mu}m$) $-2{\mu}m$ grain size when coated at $1400^{\circ}C$, and further decreased to nano grain size when coated at $1300-1350^{\circ}C$. Moreover, the high density of SiC layer (${\geq}3.19g/cm^3$) which is easily obtained at $1500^{\circ}C$ coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy (Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가)

  • Jung, Sujin;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.

Insulation of Winding and Current Lead of the High-Tc Superconducting Magnets for DC Reactor Type SFCL (DC 리액터형 고온초전도한류기용 고온초전도자석의 권선 및 전류리드의 절연)

  • 양성은;배덕권;전우용;김영식;김상현;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.226-229
    • /
    • 2003
  • Following the successful development of practical high temperature superconducting (HTS) wires, there has been renewed activity in the development of superconducting power equipments. HTS equipments must be operated in the coolant, such as liquid nitrogen (L$N_2$) or cooled by cooler, such as GM-cryocooler to maintain the temperature below critical temperature. In this paper, dielectric strength of some insulating materials, such as epoxy, teflon, and glass fiber reinforced plastic (GFRP) in L$N_2$was measured. Surface breakdown voltage of GFRP which is basic property in design of HTS solenoid coil was measured. Epoxy is a goof insulating material but it is fragile at cryogenic temperature. The multi-layer insulating method of current lead is suggested to compensate this fragile property. It consists of teflon tape layer and epoxy layer fixed with texture. Based on these measurements, the 6.6㎸ class HTS magnet for DC reactor type high-T$_{c}$ superconducting fault current limiter (SFCL) was successfully fabricated and tested.d.

  • PDF

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu;Xu, Guang;Jiang, Zhengyi;Hu, Haijiang;Zhou, Mingxing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1202-1212
    • /
    • 2018
  • The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.