Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.12.863

Mechanical Property and Ductile-Brittle Transition Behavior of Ti-Nb-P Added Extra Low Carbon High Strength Steel Sheets  

Park J. J. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.)
Lee O. Y. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.)
Park Y. K. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.)
Han S. H. (Automotive Steels Research Center, POSCO Technical Research Lab.)
Chin K. G. (Automotive Steels Research Center, POSCO Technical Research Lab.)
Publication Information
Korean Journal of Materials Research / v.14, no.12, 2004 , pp. 863-869 More about this Journal
Abstract
The purpose of this research is to investigate the mechanical property and ductile-brittle transition temperature of Ti-Nb-P added extra low carbon interstitial free steel having a tensile strength of 440 MPa. The mechanical property and transition temperature of hot rolled steel sheets were more influenced by the coiling temperature rather than by the small amount of alloying element. Further, at the same composition, the property of the specimen coiled at low temperature was superior to that obtained at higher coiling temperature. The fracture surface of 0.005C-0.2Si-1.43Mn steel coiled at $630^{\circ}C$ showed a ductile fracture mode at $-100^{\circ}C$, but coiling at $670^{\circ}C$ showed a transgranular brittle fracture mode at $-90^{\circ}C$. The galvannealed 0.006C-0.07Si-1.33Mn steel sheet annealed at $810^{\circ}C$ has tensile strength and elongation of 442.8 MPa and $36.6\%$, respectively. The transition temperature of galvannealed 0.006C-0.07Si-1.33Mn steel sheet was increased with a drawing ratio, and the transition temperature of the galvannealed 0.006C-0.07Si-1.33Mn steel was $-60^{\circ}C$ at a drawing ratio of 1.8
Keywords
extra low carbon steel; transition temperature; mechanical properties; coiling temperature; drawing ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Erhart and H. J. Grabke, Met. Sci., 15, 401 (1981)   DOI   ScienceOn
2 H. J. Grabke, ISIJ, 29, 529 (1989)   DOI   ScienceOn
3 M. Shimiz, Ph.D Thesis, Kyoto Univ. (1972)
4 E. Yasuhara, K. Sakata and T. Kato, CAMP. ISIJ., 51, 2503 (1992)
5 A. Nishimoto, J. Inagaki and K. Nakaoka, Tetsu-To-Hagane, 68, 1404 (1982)   DOI
6 P. L. Mangonon and W. E. Heitman, Microalloying, 75, 59 (1975)
7 S. S. Kang, O. Y. Lee, S. H. Han, K. G. Chin and B. S. Seong, Kor. J. of Mat. Research, 13, 683 (2003)   DOI
8 N. J. Petch, Proc. Swampscott Conf., MIT Press, 43 (1959)
9 J. S. Rege, M. Hua, G. I. Garcia and A. J. DeArdo, ISIJ, 40, 191 (2000)   DOI   ScienceOn
10 G. L. Krasko and G. B. Olson, Solid State Comm., 76, 247 (1990)   DOI   ScienceOn
11 M. Yamada, Y. Tokunaga and M. Yamamoto, Tetsu-To-Hagane, 73, 1049 (1987)   DOI
12 C. M. Liu, T. Nagoya, K. Abiko, and H. Kimura, Metall. Trans., 23A, 263 (1992)
13 I. Tsukatuni, Testu-To Hagane, 75, 774 (1989)   DOI
14 Y. Tokunaga and H. Kato: Metallurgy of Vacuum Degassed Steel Products, ed. by R. Pradhan, TMS-AIME, Warrandale, PA, 91 (1990)
15 H. Katoh, H. Takechi, N. Takahashi and M. Abe: Technology of Continuously Annealed Cold Rolled Sheet Steels, ed. by R. Pradhan, TMS-AIME, Warrandale, PA, 37 (1985)
16 K. Matsumoto, S. Hamanaka, T. Yamada and T. Tanaka, ISIJ, 34, 269 (1994)
17 M. Guttmann, Y. Lepretre, A. Aubry, M. J. Roch and H. Baudin, GALVATECH'95, Warrendale, PA, 295 (1995)
18 T. Urabe, T. Fujita, K. Nakajima, F. kitano and Y. Hosoya, IF Steel 2000 Procedings, 215 (2000)
19 H. J. Kang, J. H. Kawk, K. K. Chin and S. K. Chang, J. Kor. Inst. of Met & Mater., 30, 1165 (1992)
20 A. R. Marder, Prog. Mat. Sci., 45, 191 (2000)   DOI   ScienceOn
21 W. C. Jeong and K. M. Cho, J. Kor. Inst. Met. & Mater., 37, 672 (1997)