• Title/Summary/Keyword: high-strength mortar

Search Result 531, Processing Time 0.024 seconds

Influence of changes in cement fineness on lean mixture mortar quality (시멘트 분말도 변화가 빈배합 모르타르의 품질에 미치는 영향)

  • Lee, Jae-Jin;Moon, Byeong-Ryong;Kim, Yeong-Tae;Jang, Deok-Bae;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.100-101
    • /
    • 2016
  • The fineness degree of Ordinary Portland Cement (OPC henceforth) usually used in Korea's construction sites, is designated as over 2,800㎠/g. But the higher the fineness, the surface area of hydration reaction on water increases as well, resulting in large early age strength and high-intensity; so the trend is to prefer a high degree of fineness. But from a pore-space filling perspective, fine-particled cement is not always beneficial to intensity. Therefore in this study artificial modifications were given to cement fineness to analyze the effect of various fineness changes on the liquidity, air quantity and intensity of lean mixture cement mortar. As a result, the greater the degree of fineness, the better the cement was, with fine particle+OPC having the most satisfactory results due to consecutive particle distribution.

  • PDF

Performance Characteristics of Mortar with High Volume SCM Depending on Combinations of FA and BS (혼화재 다량치환 상태에서 FA 및 BS의 혼합비율에 따른 모르타르의 품질특성)

  • Kim, Min-Sang;Song, Yuan-Lou;Park, Seong-Bae;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.126-127
    • /
    • 2016
  • In this research, the optimum combination of fly ash (FA) and blast furnace slag (BS) was deduced by analyzing the performance of high volume supplementary cementitious materials (SCMs) cement mortar depending on various combinations of cement, FA, and BS. As a result, increased workability was shown with increased the portion of FA, while air content, setting time, and compressive strength were decreased.

  • PDF

An Experimental Study on the Properties of Hwangtoh Mortar for the Application of Construction Material (건축적 적용을 위한 황토모르터의 물성에 관한 실험적 연구)

  • Lee, Hyun-Chul;Lee, Gun;Go, Seong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.43-46
    • /
    • 2006
  • The Hwangtoh is one of the traditional construction material used in wall, plastering material, and ondol (Korean underfloor heating system) with stone and wood. It is an important greenness material and it has much advantages such as; high storage of heat, auto-purification, antibiotic ability, and emission of far infrared rays. But, it is not developed and not used in modern construction because of its low strength and properties of dry shrinkage crack. According to the recent researches and studies, it is evaluated for natural pozzolanic material like flyash or pozzolan. It's possibility on construction material is high because it's chemical and mineralogical proportion is like as Metakaolin and Kaolinite. In this point of view, this study aims to analyze the physical properties on Hwangtoh mortar through an experiment with various activation condition of Hwangtoh, which is natural pozzolanic material, for the purpose of increase the using possibility in construction material.

  • PDF

Exploring the Flexural Bond Strength of Polymer-Cement Composition in Crack Repair Applications (균열 보수용 폴리머 시멘트 복합체의 휨접착강도에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • This research aims to assess the flexural bonding efficacy of polymer-cement composites(PCCs) in mending cracks within reinforced concrete(RC) structures. The study involved infilling PCCs into cement mortar cracks of varying dimensions, followed by evaluations of enhancements in flexural adhesion and strength. The findings indicate that the flexural bond performance of PCCs in crack repair is influenced by the cement type, polymer dispersion, and the polymer-to-binder ratio. Specifically, the use of ultra-high early strength cement combined with silica fume resulted in an up to 19.0% improvement in flexural bond strength compared to the application of ordinary Portland cement with silica fume. It was observed that the augmentation in flexural strength of cement mortar filled with PCCs was significantly more dependent on the depth of the crack rather than the width. Furthermore, PCCs not only acted as repair agents but also as reinforcement materials, enhancing the flexural strength to a certain extent. Consequently, this study concludes that PCCs formulated with ultra-high early strength cement, various polymer dispersions, silica fume, and a high polymer-to-binder ratio ranging from 60% to 80% are highly effective as maintenance materials for crack filling in practical settings.

Mechanical Properties of Early Strength Mortar with Ground Granulated Blast Furnace Slag and Expansive Additive (고로슬래그미분말 및 팽창재를 혼입한 조강형 모르타르의 역학적 특성)

  • Koo, Kyung-Mo;Choi, Jae-Won;You, Byeong-Know;Cha, Wan-Ho;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.177-184
    • /
    • 2021
  • In this study, the effects of ground granulated blast furnace slag(GGBFS) and expansive additive(EA) on early strength mortar were examined for the purpose of reducing carbon and improving cement performance. As a result, ealry strength Portland cement(EPC) tended to decrease in flow compared to ordinary Portland cement(OPC), but binder with EPC and GGBFS was possible to obtain higher liquidity than OPC. EPC showed higher compressive strength and shrinkage than OPC. The compressive strength of specimen with EPC and GGBFS was reduced proportionally to the replacement ratio of GGBFS. The replacement ratio of GGBFS above the compressive strength equivalent to OPC was higher under low temperature conditions. The use of GGBFS resulted in high shrinkage compared to OPC, and this characteristic was even greater under low temperature conditions. The shrinkage of specimen with EA was decreased in early ages, but was higher than the OPC in long-term ages.

Seawater Attack Resistance of Mortars Containing Mineral Admixtures (광물질혼화재 혼합 모르타르의 해수침식 저항성)

  • 문한영;이승태;최강식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.527-530
    • /
    • 2002
  • In the present study, immersion test using artificial seawater was performed to evaluate the resistance of mortar specimens with or without ground granulated blast-furnace slag (SG) and fly ash (FA). Another variable was the fineness levels of SG (4,450, 6,000 and 8,000 ㎠/g). From the results of the immersion test for 270 days of exposure, the excellent resistance to seawater attack for SG mortar mixtures, especially in a high fineness levels, was confirmed. However, the reductions in compressive strength of FA mortar specimens was similar to those of OPC mortar specimens irrespective of replacement of FA.. In order to understand the deterioration mechanism due to seawater attack, X-ray diffraction (XRD) analysis were also carried out. Some reactants such as ettringite, gypsum, brucite and Friedel's salt were possibly detected through XRD technique.

  • PDF

Properties of Mortar Using Steel Slag Fine Aggregate (제강슬래그 잔골재를 사용한 모르타르 특성)

  • 조성현;한기석;박성우;권기주;오상윤;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.217-222
    • /
    • 2003
  • The steel slag, a by-product which is produced during the manufacture of steel by refining pig iron, is mainly used as road materials after aging it. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the expansion of volume. This problem prevents steel slag from being used as aggregate for concrete. But steel slag used in this study was controled by an air-jet method which rapidly cools substance melted at a high temperature. Rapid cooling prevents from generation of free-CaO in steel slag. In this study, properties of steel slag manufactured by air-jet method and mortar used it were investigated. As results of this study, free-CaO contents were controled under 1%. Mortar used this steel slag demanded to lower water contents, higher compressive strength and lower drying shrinkage than the basic mortar in the same condition.

  • PDF

Effect of blast-furnace slag particle fineness changes on the engineering characteristics of mortar (고로슬래그 미분말의 분말도 변화가 모르타르의 공학적 특성에 미치는 영향)

  • Lee, Jae-Jin;Moon, Byeong-Ryong;Park, Yong-Jun;Joo, Eun-Hui;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.102-103
    • /
    • 2016
  • Recently on construction sites, there is increased use of concrete with large quantities of blast-furnace slag(BS) admixture replacements, for purposes of reducing CO2 created from cement, one of the ingredients of concrete. But such high-BS fineness changes can have a huge effect on the quality of mortar and concrete. Therefore in this study an experiment was conducted in which liquidity and intensity of mortar depending on an artificially-applied change in fineness degree at degree 7. The results, though subtle, were that the larger the fineness degree, liquidity increased and air quantity decreased, and compression and flexural strength increased.

  • PDF

A Study on the Basic Properties of Cement Mortar Using Limestone Powder (석회석 미분말을 사용한 시멘트 모르타르의 기초특성에 관한 연구)

  • Kang, In-Gyu;La, Jung-Min;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.19-20
    • /
    • 2022
  • Portland Limestone Cement (PLC) is a blended cement using limestone powder as SCMs (Supplementary Cementitious Materials), and is currently regarded as an essential means for achieving carbon neutral in the cement industry. This study was performed to investigate the fresh and hardened properties of cement mortar according to the fineness and replacement ratio of limestone powder. As a result, the compressive strength of mortar used high blaine limestone powder were equivalent level of that of OPC.

  • PDF

Effect of the Amount of Attached Mortar of Recycled Aggregates on the Properties of Concrete (순환골재의 부착 모르타르량이 콘크리트의 특성에 미치는 영향)

  • Lee, Won-Ki;Choi, Jong-Oh;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2015
  • In this study, the different unit cement content by the ratio of water absorption and water-cement ratio are applied to examine the properties of the concrete used the aggregate recycled by the crushing treatment. According to the experimental results, in the mix of low strength and high water-cement ratio, both of the compressive strength is almost equal in the concrete using the recycled aggregate by the crushing treatment and the concrete using broken stones. It means that the recycled aggregate has the low effect of the amount of bonded mortar. But, in the mix of high strength and low water-cement ratio, the concrete using the recycled aggregate by the crushing treatment has 40% less of the compressive strength than that using broken stones by the effect of the amount of bonded mortar. On the other hand, after 8 weeks, the dry shrinkage of the recycled aggregate with 7% of the ratio of water absorption doubles that of the broken stones with 1% ($-350{\times}10^{-6}$), in other words $-700{\times}10^{-6}$. Thus, the dry shrinkage should be prior to any other conditions in recycling waste concrete for the aggregate for concrete. When the recycled aggregate with 3% of the ratio of water absorption is used, the compressive strength of the rich mix concrete ($450kg/m^3$ of the unit cement content) is equivalent to that of the concrete using broken stones, while in using the recycled aggregate with 7% of the ratio of water absorption, the rich mix concrete has 7% lower compressive strength than the concrete using broken stones. But, the compressive strength of the ordinary mix concrete ($350kg/m^3$ of the unit cement content) is far lower than that using broken stones.