DOI QR코드

DOI QR Code

Mechanical Properties of Early Strength Mortar with Ground Granulated Blast Furnace Slag and Expansive Additive

고로슬래그미분말 및 팽창재를 혼입한 조강형 모르타르의 역학적 특성

  • 구경모 (한화건설 건축사업본부 기술혁신팀) ;
  • 최재원 (아세아시멘트 기술연구소) ;
  • 유병노 (아세아시멘트 기술연구소) ;
  • 차완호 (아세아시멘트 기술연구소) ;
  • 강봉희 (아세아시멘트)
  • Received : 2021.04.07
  • Accepted : 2021.04.13
  • Published : 2021.06.30

Abstract

In this study, the effects of ground granulated blast furnace slag(GGBFS) and expansive additive(EA) on early strength mortar were examined for the purpose of reducing carbon and improving cement performance. As a result, ealry strength Portland cement(EPC) tended to decrease in flow compared to ordinary Portland cement(OPC), but binder with EPC and GGBFS was possible to obtain higher liquidity than OPC. EPC showed higher compressive strength and shrinkage than OPC. The compressive strength of specimen with EPC and GGBFS was reduced proportionally to the replacement ratio of GGBFS. The replacement ratio of GGBFS above the compressive strength equivalent to OPC was higher under low temperature conditions. The use of GGBFS resulted in high shrinkage compared to OPC, and this characteristic was even greater under low temperature conditions. The shrinkage of specimen with EA was decreased in early ages, but was higher than the OPC in long-term ages.

본 연구에서는 탄소저감 및 시멘트 성능 향상을 목적으로 조강형 모르타르에 대하여 산업부산물인 고로슬래그미분말(GGBFS) 및 팽창재(EA)가 미치는 영향을 검토하였다. 그 결과, 보통포틀랜드시멘트(OPC)에 비해 조강형시멘트(EPC)는 플로가 감소하는 경향을 보였으나, EPC와 GGBFS를 함께 사용하는 경우 OPC보다 높은 유동성의 확보가 가능하였다. 또한 EPC는 OPC 대비 높은 압축강도를 보였으나, 수축이 증가하는 경향을 보였다. EPC에 GGBFS를 사용하는 경우, 그 혼입률에 따라 비례적으로 압축강도는 감소하고, 수축량은 커지는 경향을 보였으며 수축은 저온조건에서 더욱 증가하였다. EPC 및 GGBFS로 구성된 결합재 조건에서, EA는 압축강도를 향상시키고, 초기재령의 수축을 저감시키는 효과를 확인하였다.

Keywords

Acknowledgement

이 논문은 2020년도 한국산업기술평가관리원 소재부품기술개발 사업의 연구비 지원(과제번호 20010616)으로 수행되었습니다.

References

  1. Hester, D., Mcnally, C., Richardson, M.G. (2005). Study of influence of slag alkali level on the alkali-silica reactivity of slag concrete, Construdction and Building Materials, 19(9), 661-665. https://doi.org/10.1016/j.conbuildmat.2005.02.016
  2. Hosan, A., Shaikh, F.U.A. (2021). Compressive strength development and durability properties of high volume slag and slag-fly ash blended concretes containing nano-CaCO3, Journal of Materials Research and Technology, 6, 1310-1322. https://doi.org/10.1016/j.jmrt.2021.01.001
  3. Japan Cement Association. (1993). Easy to Understand for Cement Science, Japan: Japan Cement Association.
  4. Jeong, I.D., Lee, T.W., Koo, K.M., Jang, S.S., Jung, Y.W., Kwon, Y.H. (2018). Compressive strength and deformation of high strength mortar with CaO-gypsum, The Proceedings of the Korea Concrete Instetute, 30(1), 163-164.
  5. Kim, K., Choi, H., Yoon, S., Kim, J., Gong, M., Jeong, Y. (2017). An experimental study on the reduction of construction period in the winter season using high early strength cement, Proceeding of Korea Concrete Institute, 473~474.
  6. Koh, K.T., Cheong, H.M. (2005). Properties of concrete to curing temperature, Korea Concrete Institute, 17(1), 22-27.
  7. Lee, E.B., Ko, J.W., Yoo, J.K., Kim, G.T., Song, D.G., Koo, K.M. (2020). Early age strength of concrete using high fineness ordinary portland cement and powdered early strength admixture, 36(7), 163-171. https://doi.org/10.5659/JAIK.2020.36.7.163
  8. Lee, S.H., Lee, K.H., Yoo, D.W., Ha, J.H., Cho, Y.G. (2015). Hydration and insulation characteristics of a ground granulated blast furnace slag based non-sintered cement using circulating fluidzed bed combustion ash as a activator, Journal of the Korea Concrete Institute, 27(3), 245-252. https://doi.org/10.4334/JKCI.2015.27.3.245
  9. Lee, T.G., Kim, Y.R., Song, Y.C., Lee, J.H., Park, C.J. Park, J.H. (2019). Evaluation on strength development of high early strength concrete for horizontal form removal, Proceeding of Korea Concrete Institute, 517-518.
  10. Leng, F., Feng, N., Lu, X. (2000). An experiment study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete, Cement and Concrete research, 30, 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  11. Lim, S.N., Wee, T.H. (2020). Autogenous shrinkage of ground -granulated blast furnace slag concrete, ACI Materials Journal, 97(5), 587-593.
  12. Park, C.Y., Kang, B.H. (2008). A study on rheological properties of cement paste using expansive additives by kind & replacement ratio, Journal of the Korea Institute of Building Construction, 8(2), 99-106. https://doi.org/10.5345/JKIC.2008.8.2.099
  13. Ryu, D.W., Kim, W.J., Yang, W.H., You, J.H., Ko, J.W. (2012). An experimental study on the freezing-thawing and chloride resistance of concrete using high volumes of GGBFS, Journal of the Korea Institute of Building Construction, 12(3), 315-322. https://doi.org/10.5345/JKIBC.2012.12.3.315
  14. Siddique, R., Bennacer, R. (2012). Use of iron and steel industry by-product (GGBS) in cement paste and mortar, Resources Conservation and Recycling, 69, 29-34. https://doi.org/10.1016/j.resconrec.2012.09.002
  15. Yang, K.H., Cho, A.R., Song, J.K., Nam, S.H. (2012). Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars, Construction and Building Materials, 29, 410-419 https://doi.org/10.1016/j.conbuildmat.2011.10.063
  16. Zhang, H.Y., Kiu, J.C., Wu, B. (2021). Mechanical properties and reaction mechanism of one-part geopolymer mortars, Construction and Building Materials, 273(2), 121973. https://doi.org/10.1016/j.conbuildmat.2020.121973