• Title/Summary/Keyword: high-speed generator

Search Result 439, Processing Time 0.025 seconds

The Study on the implementation and design of the RF transceiver for fast frequency hopping (고속주파수 도약용 RF송수신기 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Jong-Sung;Bae, Moon-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.591-596
    • /
    • 2016
  • This paper presents a study on the subject for the design and implementation of high-speed frequency hopping RF transceiver used for tactical communications systems. Jump the transmission / reception frequency of the L-band to hop tens per second is possible by maximizing the immunity to interference, and is applicable to communication systems having a charging rotation function. To high-speed frequency hopping it is necessary to apply the necessary fast frequency hopping scheme DDS Driven PLL added. In this paper, the RF transceiver design and simulation analysis capabilities with fast frequency tactical communication systems, were implemented after the main test for functionality and performance. Was demonstrated hop high-speed jump tens per second through a test, the main transmission output, were measured RF key performance, such as received noise figure, by using the VSG and VSA generates a ${\pi}/4$ DQPSK modulated signal constellation and by EVM measurement that there is no problem in applying the communications system described above was pre-validated.

Design and Implementation of Direct Torque Control Based on an Intelligent Technique of Induction Motor on FPGA

  • Krim, Saber;Gdaim, Soufien;Mtibaa, Abdellatif;Mimouni, Mohamed Faouzi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1527-1539
    • /
    • 2015
  • In this paper the hardware implementation of the direct torque control based on the fuzzy logic technique of induction motor on the Field-Programmable Gate Array (FPGA) is presented. Due to its complexity, the fuzzy logic technique implemented on a digital system like the DSP (Digital Signal Processor) and microcontroller is characterized by a calculating delay. This delay is due to the processing speed which depends on the system complexity. The limitation of these solutions is inevitable. To solve this problem, an alternative digital solution is used, based on the FPGA, which is characterized by a fast processing speed, to take the advantage of the performances of the fuzzy logic technique in spite of its complex computation. The Conventional Direct Torque Control (CDTC) of the induction machine faces problems, like the high stator flux, electromagnetic torque ripples, and stator current distortions. To overcome the CDTC problems many methods are used such as the space vector modulation which is sensitive to the parameters variations of the machine, the increase in the switches inverter number which increases the cost of the inverter, and the artificial intelligence. In this paper an intelligent technique based on the fuzzy logic is used because it is allows controlling the systems without knowing the mathematical model. Also, we use a new method based on the Xilinx system generator for the hardware implementation of Direct Torque Fuzzy Control (DTFC) on the FPGA. The simulation results of the DTFC are compared to those of the CDTC. The comparison results illustrate the reduction in the torque and stator flux ripples of the DTFC and show the Xilinx Virtex V FPGA performances in terms of execution time.

The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms (발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

Development of A Uniform And Casual Clothing Recognition System For Patient Care In Nursing Hospitals

  • Yun, Ye-Chan;Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.45-53
    • /
    • 2020
  • The purpose of this paper is to reduce the ratio of the patient accidents that may occur in nursing hospitals. In other words, it determines whether the person approaching the dangerous area is a elderly (patient uniform) group or a practitioner(Casual Clothing) group, based on the clothing displayed by CCTV. We collected the basic learning data from web crawling techniques and nursing hospitals. Then model training data was created with Image Generator and Labeling program. Due to the limited performance of CCTV, it is difficult to create a good model with both high accuracy and speed. Therefore, we implemented the ResNet model with relatively excellent accuracy and the YOLO3 model with relatively excellent speed. Then we wanted to allow nursing hospitals to choose a model that they wanted. As a result of the study, we implemented a model that can distinguish patient and casual clothes with appropriate accuracy. Therefore, it is believed that it will contribute to the reduction of safety accidents in nursing hospitals by preventing the elderly from accessing the danger zone.

Virtual Inertial Control of a Wind Power Plant using the Maximum Rate of Change of Frequency (주파수의 최대 변화율을 이용한 풍력단지 가상관성제어)

  • Kim, Dooyeon;Kim, Jinho;Lee, Jinshik;Kim, Yeon-Hee;Chun, Yeong-Han;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.918-924
    • /
    • 2013
  • In a conventional power system, the frequency is recovered to the nominal value by the inertial, primary, and secondary responses of the synchronous generators (SGs) after a large disturbance such as a generator tripping. For a power system with high wind penetration, the system inertia is significantly reduced due to the maximum power point tracking control based operation of the variable speed wind generators (WGs). This paper proposes a virtual inertial control for a wind power plant (WPP) based on the maximum rate of change of frequency to release more kinetic energy stored in the WGs. The performance of the proposed algorithm is investigated in a model system, which consists of a doubly fed induction generator-based WPP and SGs using an EMTP-RV simulator. The results indicate that the proposed algorithm can improve the frequency nadir after a generator tripping. In addition, the algorithm can lead the instant of a frequency rebound and help frequency recovery after the frequency rebound.

Development of Power Management System for Efficient Energy Usage of Small Generator (소형 발전기의 에너지 절약을 위한 전력관리 시스템 개발)

  • Jeon, Min-Ho;Oh, Chang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2601-2606
    • /
    • 2012
  • In this paper, an electricity management system, which saves energy by utilizing electricity consumption of load from an environment that uses at least two compact generators, is proposed and developed. A hardware is constructed by using TMS320C6713 DSP chip made by TI that is capable of high speed hardware floating point processing while serial communication is used for communication with a monitoring PC. Manual control is made possible from the monitoring PC and automatic on/off is enabled in the generator by using data collected by CT/PT sensor from the DSP mainboard. Test results confirm that the electricity management system proposed in this study functions without abnormality. The application of an algorithm that saves energy by using electricity consumption of load also allows for a longer supply of electricity compared to continuously using two compact generators.

Design and Fabrication of a Surge Impedance Meter (서지임피던스 측정기의 설계 및 제작)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Kim, Il-Kwon;Moon, Byung-Doo;Kim, Hwang-Kuk;Park, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.645-649
    • /
    • 2007
  • Ground systems flow fault currents into the ground, and suppress Ground Potential Rise (GPR) by the current. In this paper, we designed and fabricated a surge impedance meter to analyze the ground impedance in wide frequency ranges. The meter consists of a surge generator, a high speed sample/hold (S/H) circuit and an associated electronics. The surge generator produces surge voltage up to 5kV in ranges of $50\sim500ns$. Field tests were carried out to evaluate the surge impedance meter at a driven-rod ground system. The results showed that surge impedance of ground systems should be measured by various fast surge waveforms, since the impedance increases as the rise time of applied voltage increases.

A CDR using 1/4-rate Clock based on Dual-Interpolator (1/4-rate 클록을 이용한 이중 보간 방식 기반의 CDR)

  • Ahn, Hee-Sun;Park, Won-Ki;Lee, Sung-Chul;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.68-75
    • /
    • 2009
  • In this paper, an efficient proposed CDR(Clock and Data Recovery Circuits) using 1/4-rate clock based on dual-interpolator is proposed. The CDR is aimed to overcome problems that using multi-phase clock to decrease the clock generator frequency causes side effects such as the increased power dissipation and hardware complexity, especially when the number of channels is high. To solve these problems, each recovery part generates needed additional clocks using only inverters, but not flip-flops while maintaining the number of clocks supplied from a clock generator the same as 1/2-rate clock method. Thus, the reduction of a clock generator frequency using 1/4-rate clocking helps relax the speed limitation and power dissipation when higher data rate transfer is demanded.

A Study on Damping Improvement of a Synchronous Generator with Static VAR Compensator using a Fuzzy-PI Controller (퍼지-PI 제어기를 이용하여 정지형 무효전력 보상기를 포함한 동기 발전기의 안정도 개선에 관한 연구)

  • 주석민;허동렬;김상효;정동일;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2001
  • This paper resents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the must fiexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be barred on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and allied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

  • PDF

Three-D core multiphysics for simulating passively autonomous power maneuvering in soluble-boron-free SMR with helical steam generator

  • Abdelhameed, Ahmed Amin E.;Chaudri, Khurrum Saleem;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2699-2708
    • /
    • 2020
  • Helical-coil steam generator (HCSG) technology is a major design candidate for small modular reactors due to its compactness and capability to produce superheated steam with high generation efficiency. In this paper, we investigate the feasibility of the passively autonomous power maneuvering by coupling the 3-D transient multi-physics of a soluble-boron-free (SBF) core with a time-dependent HCSG model. The predictor corrector quasi-static method was used to reduce the cost of the transient 3-D neutronic solution. In the numerical system simulations, the feedwater flow rate to the secondary of the HCSGs is adjusted to extract the demanded power from the primary loop. This varies the coolant temperature at the inlet of the SBF core, which governs the passively autonomous power maneuvering due to the strongly negative coolant reactivity feedback. Here, we simulate a 100-50-100 load-follow operation with a 5%/minute power ramping speed to investigate the feasibility of the passively autonomous load-follow in a 450 MWth SBF PWR. In addition, the passively autonomous frequency control operation is investigated. The various system models are coupled, and they are solved by an in-house Fortran-95 code. The results of this work demonstrate constant steam temperature in the secondary side and limited variation of the primary coolant temperature. Meanwhile, the variations of the core axial shape index and the core power peaking are sufficiently small.