• Title/Summary/Keyword: high-speed circuits

Search Result 387, Processing Time 0.023 seconds

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

Development of 3D scanner using structured light module based on variable focus lens

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.260-268
    • /
    • 2020
  • Currently, it is usually a 3D scanner processing method as a laser method. However, the laser method has a disadvantage of slow scanning speed and poor precision. Although optical scanners are used as a method to compensate for these shortcomings, optical scanners are closely related to the distance and precision of the object, and have the disadvantage of being expensive. In this paper, 3D scanner using variable focus lens-based structured light module with improved measurement precision was designed to be high performance, low price, and usable in industrial fields. To this end, designed a telecentric optical system based on a variable focus lens and connected to the telecentric mechanism of the step motor and lens to adjust the focus of the variable lens. Designed a connection structure with optimized scalability of hardware circuits that configures a stepper motor to form a system with a built-in processor. In addition, by applying an algorithm that can simultaneously acquire high-resolution texture image and depth information and apply image synthesis technology and GPU-based high-speed structured light processing technology, it is also stable for changes to external light. We will designed and implemented for further improving high measurement precision.

A 0.25-$\mu\textrm{m}$ CMOS 1.6Gbps/pin 4-Level Transceiver Using Stub Series Terminated Logic Interface for High Bandwidth

  • Kim, Jin-Hyun;Kim, Woo-Seop;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.165-168
    • /
    • 2002
  • As the demand for higher data-rate chip-to-chip communication such as memory-to-controller, processor-to-processor increases, low cost high-speed serial links\ulcorner become more attractive. This paper describes a 0.25-fm CMOS 1.6Gbps/pin 4-level transceiver using Stub Series Terminated Logic for high Bandwidth. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by channel low pass effects, process-limited on-chip clock frequency, and serial link distance. The proposed transceiver uses multi-level signaling (4-level Pulse Amplitude Modulation) using push-pull type, double data rate and flash sampling. To reduce Process-Voltage-Temperature Variation and ISI including data dependency skew, the proposed high-speed calibration circuits with voltage swing controller, data linearity controller and slew rate controller maintains desirable output waveform and makes less sensitive output. In order to detect successfully the transmitted 1.6Gbps/pin 4-level data, the receiver is designed as simultaneous type with a kick - back noise-isolated reference voltage line structure and a 3-stage Gate-Isolated sense amplifier. The transceiver, which was fabricated using a 0.25 fm CMOS process, performs data rate of 1.6 ~ 2.0 Gbps/pin with a 400MHB internal clock, Stub Series Terminated Logic ever in 2.25 ~ 2.75V supply voltage. and occupied 500 * 6001m of area.

  • PDF

Design of clock duty-cycle correction circuits for high-speed SoCs (고속 SoC를 위한 클락 듀티 보정회로의 설계)

  • Han, Sang Woo;Kim, Jong Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2013
  • A clock duty-cycle corrector (DCC) which is an essential device of clocking circuits for high-speed system-on-chip (SoC) design is introduced in this paper. The architectures and operation of conventional analog feedback DCCs and digital feedback DCCs are compared and analyzed. A new mixed-mode feedback DCC that combines the advantages of analog DCCs and digital DCCs to achieve a wider duty-cycle correction range, higher operating frequency, and higher duty-cycle correction accuracy is presented. Especially, the architectures and design of a mixed-mode duty-cycle amplifier (DCA) which is a core unit circuit of a mixed-mode DCC is presented in detail. Two mixed-mode DCCs based on a single-stage DCA and a two-stage DCA were designed in a 0.18-${\mu}m$ CMOS process, and it is proven that the two-stage DCA-based DCC has a wider duty-cycler correction range and smaller duty-cycle correction error.

Muliti Digital Data Control System Development for Ultra-Small Satellite using FPGA (FPGA를 이용한 초소형위성용 다중디지털 데이터 처리 시스템 개발)

  • Ryu, Jung-Hwan;Shim, Chang-Hwan;Choi, Young-Hoon;Lee, Byung-Hoon;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.556-563
    • /
    • 2007
  • The current trend of low cost ultra-small satellites is to utilize Commercial Off the Shelf (COTS) parts to save cost, and accordingly, Command and Data Handling (C&DH) that operates the satellite and collects/processes the data is also designed and developed around commercial controllers. However, functionalities of commercial controllers are limited according to the specs outlined by the manufacturer. In order for the commercial controllers to be used for satellites where variety of interfaces is required, a separate interface circuit is required. Therefore, a Multi Digital Data Control System (MDDCS) using Field Programmable Gate Array (FPGA) has been developed in order to expand multiple digital interfaces that are not supported by the commercial controller, and also to compensate for SEU. This has been implemented on Actel A3P1000 using Very High Speed Integrated Circuits Hardware Description Language (VHDL).

Characteristics of SiGe Thin Film Resistors in SiGe ICs (SiGe 집적회로 내의 다결정 SiGe 박막 저항기의 특성 분석)

  • Lee, Sang-Heung;Lee, Seung-Yun;Park, Chan-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.439-445
    • /
    • 2007
  • SiGe integrated circuits are being used in the field of high-speed wire/wireless communications and microwave systems due to the RF/high-speed analog characteristics and the easiness in the fabrication. Reducing the resistance variation in SiGe thin film resistors results in enhancing the reliability of integrated circuits. In this paper, we investigate the causes that generate the resistance nonuniformity after the silicon-based thin film resistor was fabricated, and consider the counter plan against that. Because the Ti-B precipitate, which formed during the silicide process of the SiGe thin film resistor, gives rise to the nonuniformity of SiGe resistors, the boron ions should be implanted as many as possible. In addition, the resistance deviation increases as the size of the contact hole that interconnects the SiGe resistor and the metal line decreases. Therefore, the size of the contact hole must be enlarged in order to reduce the resistance deviation.

A Preliminary Research on Optical In-Situ Monitoring of RF Plasma Induced Ion Current Using Optical Plasma Monitoring System (OPMS)

  • Kim, Hye-Jeong;Lee, Jun-Yong;Chun, Sang-Hyun;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.523-523
    • /
    • 2012
  • As the wafer geometric requirements continuously complicated and minutes in tens of nanometers, the expectation of real-time add-on sensors for in-situ plasma process monitoring is rapidly increasing. Various industry applications, utilizing plasma impedance monitor (PIM) and optical emission spectroscopy (OES), on etch end point detection, etch chemistry investigation, health monitoring, fault detection and classification, and advanced process control are good examples. However, process monitoring in semiconductor manufacturing industry requires non-invasiveness. The hypothesis behind the optical monitoring of plasma induced ion current is for the monitoring of plasma induced charging damage in non-invasive optical way. In plasma dielectric via etching, the bombardment of reactive ions on exposed conductor patterns may induce electrical current. Induced electrical charge can further flow down to device level, and accumulated charges in the consecutive plasma processes during back-end metallization can create plasma induced charging damage to shift the threshold voltage of device. As a preliminary research for the hypothesis, we performed two phases experiment to measure the plasma induced current in etch environmental condition. We fabricated electrical test circuits to convert induced current to flickering frequency of LED output, and the flickering frequency was measured by high speed optical plasma monitoring system (OPMS) in 10 kHz. Current-frequency calibration was done in offline by applying stepwise current increase while LED flickering was measured. Once the performance of the test circuits was evaluated, a metal pad for collecting ion bombardment during plasma etch condition was placed inside etch chamber, and the LED output frequency was measured in real-time. It was successful to acquire high speed optical emission data acquisition in 10 kHz. Offline measurement with the test circuitry was satisfactory, and we are continuously investigating the potential of real-time in-situ plasma induce current measurement via OPMS.

  • PDF

Design of Low-Power and Low-Complexity MIMO-OFDM Baseband Processor for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저전력/저면적 MIMO-OFDM 기저대역 프로세서 설계)

  • Im, Jun-Ha;Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.940-948
    • /
    • 2008
  • This paper presents a low-power, low-complexity design and implementation results of a high speed multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless LAN (WLAN) baseband processor. The proposed processor is composed of the physical layer convergence procedure (PLCP) processor and physical medium dependent (PMD) processor, which have been optimized to have low-power and reduced-complexity architecture. It was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. As a result, the proposed TX-PLCP processor reduced the power consumption by as much as 81% over the bit-level operation architecture. Also, the proposed MIMO symbol detector reduced the hardware complexity by 18% over the conventional SQRD-based architecture with division circuits and square root operations.

LIGBT with Dual Cathode for Improving Breakdown Characteristics

  • Kang, Ey-Gook;Moon, Seung-Hyun;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.16-19
    • /
    • 2000
  • Power transistors to be used in Power Integrated Circuits(PIC) are required to have low on resistance, fast switching speed, and high breakdown voltage. The lateral IGBTs(LIGBTs)are promising power devices for high voltage PIC applications, because of its superior device characteristics. In this paper, dual cathode LIGBT(DCIGBT) for high voltage is presented. We have verified the effectiveness of high blocking voltage in the new device by using two dimensional devices simulator. We have analyzed the forward blocking characteristics , the latch up performance and turn off characteristics of the proposed structure. Specially, we have focused forward blocking of LIGBT. The forward blocking voltage of conventional LIGBT and the proposed LIGBT are 120V and 165V, respectively. . The forward blocking characteristics of the proposed LIGBT is better than that of the conventional LIGBT. This forward blocking comparison exhibits a 1.5 times improvement in the proposed LIGBT.

  • PDF

REffects of Surge Protective Devices with Respect to Types of System Grounding and Wiring Methods (전원계통의 접지방식 및 배선방식에 따른 서지보호기의 효과)

  • 이수봉;이복희;길형준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.90-99
    • /
    • 2004
  • High speed info-communications equipment are required with development of highly information-oriented society, the intelligent industrial facilities and social systems such as administrative, financial and traffic systems, are gradually becoming to automation, which are composed of the integrated circuits and micro-semiconductors, remote control and operation. Thus modern micro-electronic circuits can frequently be damaged by lightning surge. The protection of electronic circuits from lightning overvoltages is concentrated very interesting. In this paper, for the purpose of providing the effective protection method of electronic devices such micro-computers from lightning surges in a residential building, the protection effect of surge protective devices according to types of system groundings were experimentally analyzed. Also the effective installation method of surge protective devices was examined and proposed. The installation of SPDs in retrofits was a high remnant voltage across the protected device owing to the inductance in the long wires to the SPDs. Finally the method of installing the SPD by twisted pain wires is remarkably effective for fast rising transient overvoltages.