• Title/Summary/Keyword: high-solid acrylic resin

Search Result 24, Processing Time 0.019 seconds

Curing Behavior by Rotation Rheometer of Acrylic High-Solid Coatings (아크릴계 하이솔리드 도료의 Rotation Rheometer에 의한 경화거동 연구)

  • Yang, In-Mo;Jung, Choong-Ho;Kim, Tae-Ok;Park, Hong-Soo;Park, Eun-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • Curing reaction was carried out with the acrylic resin (ACR) [n-butyl acrylate/atyrene/2-hydroxyethyl methacrylate/acetoacetoxyethyl methacrylate (AAEM)] synthesized before and a curing agent, hexamethoxymethylmelamine (HMMM). With rotational rheometer, the effect of catalysts on curing rate of acrylic resin/melamine was examined. Among the four catalysts used, p-toluene sulfonic acid showed the highest reactivity, and the optimum amount of catalyst was 0.5 phr. It was observed that in the ACR/HMMM curing reaction, gelation point was lowered with the increasing the amount of AAEM and HMMM in the ACR.

Application of Acrylic Resins Containing Caprolactone Group and 90% Solid Contents to High-Solid Coatings (카프로락톤기 함유 90% 고형분인 아크릴수지의 하이솔리드 도료에의 적용)

  • Park, Hong-Soo;Yang, In-Mo;Kim, Seung-Jin;Kim, Young-Geun;Jung, Choong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.149-159
    • /
    • 2007
  • In order to prepare high-solid coatings, acrylic resins, HSCs [poly (EA/EMA/2-HEMA/CLA)] that contain 90% solid, were synthesized by copolymerization of ethyl acrylate (EA), ethyl methacrylate (EMA), 2-hydroxyethyl methacrylate (2-HEMA) and caprolactone acrylate (CLA). The high-solid coatings named as CHSCs (HSCs/HDI-trimer) were prepared by the curing reaction between the acrylic resins containing 90% solid contents and the isocyanates (HDI-trimer) curing agent room temperature. The curing behavior and various properties were examined on the film coated with the both high-solid coatings. The glass transition temperatures $(T_g)$ of CHSCs increased proportionally with increasing the predicted $T_g$ value by Fox equation, and had nothing to do with the solid contents. The prepared film showed good properties for $60^{\circ}$ specular gloss, impact resistance, cross-hatch adhesion and heat resistance, and bad properties for pencil hardness, drying time, and pot-life. Among the film properties, the heat resistance was very excellent and could be explained by the introduction of functional monomers of CLA.

Application of Acrylic Resins Containing Acetoacetoxy Group and 80% Solid Contents to High-Solid Coatings (아세토아세톡시기 함유 80% 고형분인 아크릴수지의 하이솔리드 도료에의 적용)

  • Park, Hong-Soo;Hong, Seok-Young;Kim, Song-Hyoung;Yoo, Gyu-Yeol;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.319-327
    • /
    • 2006
  • In order to prepare high-solid coatings, first acrylic resins (HSAs) which contain 80% solid were synthesized, and then the prepared resins were cured with isocyanate at room temperature. In the synthesis of HSAs, viscosity, number average molecular weight $(M_n)$ and conversion were $1372{\sim}2700$ cps, $1520{\sim}1650$ and $83{\sim}87%$, respectively. Among the four kinds of initiators used, tert-amylperoxy-2-ethyl hexanoate was the most proper one in the synthesis of HSAs. With increasing $T_g$ values, viscosity increased rapidly and molecular weight increased slowly. As a result of the examination of coated films, it was found that $60^{\circ}$ specular gloss, impact resistance, heat resistance and cross-hatch adhesion were good, and pencil hardness, drying time and pot life were poor.

Synthesis of Eco-Friendly High Solid Acrylic Resins and Curing Properties of Acrylic Urethane Resin Coatings (환경 친화형 하이솔리드 아크릴수지의 합성과 아크릴 우레탄 도료의 경화 특성)

  • Kim, Jin-Wook;Lee, Dong-Chan;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.586-592
    • /
    • 2017
  • In this study, acrylic resins with solids content of 75% were prepared by addition polymerization of n-butyl acrylate (BA), methyl methacrylate (MMA), 2-hydroxypropyl methacrylate (HPMA) and acetoacetoxyethyl methacrylate (AAEM) monomers. At this time, the glass transition temperature ($T_g$) of the acrylic resin was changed to 20, 30 and $40^{\circ}C$, and the hydroxyl value (OH value) was changed to 60, 90 and 120. As a result, the viscosity of acrylic resin increased with increasing $T_g$ and hydroxyl (OH) value. The synthesized acrylic resin was designed to have a high cross-link density to maintain high elasticity and high durability. The crosslinked acrylic resin was used to prepare an acrylic urethane clear coating by curing reaction with a block isocyanate (Desmodur BL-3175). The physical properties of the clear paints were analyzed by measuring viscosity, adhesion, pencil hardness and $60^{\circ}$ specular gloss. Acrylic urethane clear coatings were prepared as specimens and evaluated for various properties to be applied as top coatings for coil coating. The prepared coatings were excellent in adhesion, excellent in $60^{\circ}$ specular gloss and pencil hardness, and eco-friendly.

Preparation of Environmental Friendly High-Solid Coatings and Their Property Changes with Solid Contents (환경친화성 하이솔리드 도료의 제조 및 고형분 함량에 따른 도막물성 변화)

  • Park, Hong-Soo;Jo, Hye-Jin;Shim, Il-Woo;You, Hyuk-Jae;Kim, Young-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.116-122
    • /
    • 2005
  • Room temperature cure type of acryl-urethane coatings with high solid content were prepared in this study. Acrylic resins with 80% solid content were cured with hexamethylene diisocyanate (Desmodure N-3600). The cure time of prepared coatings BEHCC-84 (BEHC-84 : $T_g=0^{\circ}C$) and BEHCC-87 (BEHC-87 : $T_g=30^{\circ}C$), measured by rigid-body pendulum method, was recorded 8.3 hours and 3.8 hours, respectively. Dynamic viscoelastic experiment also revealed the glass transition temperature of BEHCC-84 and BEHCC-87 to be $T_g=40.3^{\circ}C$ and $T_g=43.3^{\circ}C$, respectively. It was found that the adhesion and flexural properties among various propeties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.

Preparation and Physical Properties of High-Solid Coatings by Acrylic Resins and Hexamethylene Diisocyanate-Biuret (아크릴수지와 헥사메틸렌 디이소시아네이트-뷰렛에 의한 고 고형분 도료의 제조 및 도막물성 연구)

  • 유혁재;정동진;박홍수;김성길;임완빈
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.273-280
    • /
    • 2004
  • Acrylic resins (ethyl methacrylate-2-hydroxypropyl methacrylate-n-butyl acrylate-acrylic acid EHBCs) containing 80% of solid were synthesized. Then, high-solid coatings (ethyl methacrylate-2-hydroxypropyl methacrylate-n-butyl acrylate-acrylic acid/hexamethylene diisocyanate-biuret : EHBCNs) were prepared by curing of the acrylic resin with curing agent hexamethylene diisocyanate-biuret at room temperature. The cure time of prepared coatings EHBCN-4 (EHBC-4 : $T_{g}$ = $0^{\circ}C$) and EHBCN-7 (EHBC-7 : $T_{g}$ = 3$0^{\circ}C$), measured by rigid-body pendulum method, was recorded 6.2 hours and 4.5 hours, respectively. Dynamic viscoelastic experiment revealed the glass transition temperature of EHBCN-4 and EHBCN-7 to be $14^{\circ}C$ and $39^{\circ}C$, respectively. It was found that the adhesion and flexural properties among various properties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.

Physical Properties of High-Solid Coatings with Acrylic Resins Containing Acetoacetoxy Group and Allophanate-Trimer (Acetoacetoxy기 함유 아크릴수지와 Allophanate-Trimer에 의한 하이솔리드 도료의 도막물성)

  • Jo Hye-Jin;Shim Il-Woo;Park Hong-Soo;Kim Seung-Jin;Kim Seong-Kil
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.230-237
    • /
    • 2006
  • Copolymers(HSA-98-20, HSA-98-0, HSA-98+20) which we acrylic resin containing 80% solid content were synthesized by the reaction of monomers, including methyl methacrylate, n-butyl acrylate, and 2-hydroxyethyl acrylate with a functional monomer, acetoacetoxyethyl methacrylate (AAEM), which nay give improvements in cross-linking density and physical properties of films. The physical properties of prepared acrylic resins, containing AAEM, are as follows viscosities, $1420\sim5760cps$ ; number average molecular weight, $2080\sim2300g/mol$; polydispersity index, $2.07\sim2.19$ ; and conversions, $88\sim93%$. In the next step, high-solid coatings (HSA-98-20C, HSA-98-0C, HSA-98+20C) were prepared by the curing reaction between acrylic resins containing 80% solid content and isocyanate at room temperature. Various properties were examined on the film coated with the prepared high-solid coatings. The introduction of AAEM to the coatings enhanced the abrasion resistance and solvent resistance, which indicated the possible use of high- solid coatings for top-coating materials of automobile. Since the curing by viscoelastic measurement occurred in sequence of HSA-98+20C > HSA-98-0C > HSA-98-20C, it was concluded that the curing rates became faster with incresing $T_g$ values.

Synthesis of Acrylic Resins with 80% Solid Contents for High-Solid Coatings (하이솔리드 도료용 80% 고형분인 아크릴수지의 합성)

  • Park, Hong-Soo;Jo, Hye-Jin;Shim, Il-Woo;Kim, Seung-Jin;Kim, Yeoung-Chan;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.362-370
    • /
    • 2005
  • Copolymers (HSA-98-20, HSA-98-0, HSA-98+20) which are acrylic resin containing 80% solid content were synthesized by the reaction of monomers, including methyl methacrylate, n-butyl acrylate, and 2-hydroxyethyl acrylate with a functional monomer, such as acetoacetoxyethyl methacrylate (AAEM), which may improve in cross-linking density and physical properties of films. The physical properties of prepared acrylic resins, containing AAEM, are as follows : viscosity, $1420{\sim}5760cps$ ; number average molecular weight, $2080{\sim}2300$ ; polydispersity index, $2.07{\sim}2.19$ ; conversions, $88{\sim}93%$, respectively. To prepare acryl resins, four kinds of initiators including ${\alpha},{\alpha}'-azobisisobutyronitirile$ (AIBN), di-tert-butyl peroxide (DTBP), t-amylperoxy-2-ethyl hexanoate (APEH), benzoyl peroxide (BPO) were used. The viscosity of the acrylic resins prepared with these initiators was increased in the order of DTBP>APEH>AIBN>BPO. APEH was proved as a suitable initiator in this study. Shear rates of acrylic resins were constant in respect to viscosity. From these results, it would appear that the resins have Newtonian flow characteristics and good workability.

Curing Behavior by Rheovibron of Acrylic High-Solid Coatings (아크릴계 하이솔리드 도료의 Rheovibron에 의한 경화거동 연구)

  • Kim, Dae-Won;Hwang, Kyu-Hyun;Kim, Seung-Jin;Wu, Jong-Pyo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.142-152
    • /
    • 2001
  • Acrylic resin(ACR) was blended with a curing agent, hexamethoxymethylmela-mine(HMMM), in which blending ratio was 70:30. The curing behavior was examined using Rheovibron. Cross-linking reaction started at $170^{\circ}C$ in 2 min of reaction and curing was completed in 10 min. It was found that the extent of cross-linking increased with the content of acetoacetoxyethyl methacrylate monomer in the ACR.

Preparation and Physical Properties of High-Solids Acrylic/Urea Coatings (하이솔리드 아크릴/우레아 도료의 제조와 도막물성 연구)

  • Jung, Choong-Ho;Kim, Sung-Rae;Park, Hyong-Jin;Kim, Myung-Soo;Park, Hong-Soo;Park, Shin-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.311-319
    • /
    • 2002
  • Environmental friendly acrylic/urea high-solid paint(MUHC) were prepared through the curing reaction of acrylics resin(EBHC) containing 70wt% of solids content and butylated urea curing agent. The synthesis of EBHC Was done at $150^{\circ}C$ for 6 hours, and the results were obtained as follows : $M_{n}=1830{\sim}2190$, $M_{w}$ $3290{\sim}4000$, $M_{w}/M_{n}$=1.80{\sim}1.83$ viscosity=$110{\sim}352$ cps, and conversion=$82{\sim}92$%. After the film was coated with MUHC, the various physical properties were measured. They showed that enhancement of the coating properties such as adhesion, flexibility, abrasion resistance, impact resistance, and water resistance could be expected through introdl1cing caprolactone acrylate component in acrylics resin for the high-solids content acrylics/urea coatings.