• Title/Summary/Keyword: high-pressure

Search Result 13,846, Processing Time 0.04 seconds

Pressure Control of Hydraulic Cylinder using high Speed On-Off Solenoid Valve (고속 온-오프 전자 밸브를 사용한 유압 실린더의 압력 제어)

  • 김상수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • In this study a new pattern of pressure control of hydraulic cylinder using high speed On-Off solenoid valve in the electro-hydraulic system has been suggested. The control valve is 3-way high speed On-Off solenoid valve which is operated by PWM(Pulse Width Modulation)control signal. The high speed On-Off solenoid valve has a tendency to induce severe pressure fluctuation in the hydraulic actuator so it has not been used for the purpose of closed loop control with direct pres-sure feedback. In this study closed loop control with direct pressure feedback is enabled by using a digital filter which has linear minimum mean square filter algorithm. Through some experiments it is confirmed that stable pressure control can be realized by the proposed control technique.

  • PDF

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity

  • Jung, Young;Cho, Hanchul
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.145-150
    • /
    • 2022
  • The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.

Analysis of the air tightness for high speed train (고속전철의 기밀 거동 해석)

  • 정병철;염경안;강석택
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.220-224
    • /
    • 2002
  • As the train run through the tunnels, especially at high speed, pressure shock developed by the running train gives the influence on the pressure fluctuation inside the tunnel and consequently, inside the car. This pressure changes and pressure gradient is closely related with the tunnel section, train speed, air tightness of the train, length of the tunnel, etc. This study includes the analysis of the pressure behavior at the varied train speed and tunnel length. The results show that train speed affects the pressure gradient inside the car almost linearly, and that there exist the critical tunnel lengths that gives the maximum value of pressure change and pressure gradient, respectively.

  • PDF

A Study on Combustion Characteristics of Diesel-water Emulsion with High Pressure Injection (고압분사 경유-물 혼합연료의 연소특성)

  • Jeong, Dae-Yong;Lee, Jong-Tai
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1435-1441
    • /
    • 2003
  • Combustion characteristics on diesel-water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure and injection timing. As a fact of well-known, maximum combustion pressure was decreased and ignition delay was elongated in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure. It was shown that combustion of neat diesel in case of injecting with 600bar is similar to that of 20 % diesel-water emulsion was injected at 1200 bar.

Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion (연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

High Pressure X-ray Diffraction Studies on a Natural Talc (천연산 활석에 대한 고압 X-선 회절연구)

  • 김영호;이지은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • Talc (Mg3Si4O10(OH)2), one of the sheet silicate minerals, which is the hydrothermal alteration product of serpentinite at Cheongarm mine was prepared for the high pressure compressibility studies. Energy dispersive X-ray diffraction experiment was carried out using the Synchrotron Radiation with the Mao-Bell type diamond anvil cell at room temperature. Polycrystalline talc was mixed with MgO powder for pressure sensor as well as pressure medium in the sample chamber. High pressure runs were performed at pressures up to 35.2 GPa. Talc shows no phase transition within the present high pressure region. Bulk modulus of this talc was determined by the Birch-Murnaghan equation of state to be 78 GPa assuming its first pressure derivative Ko' of 4.

  • PDF

A Study on Influence of High Pressure Hose On Automotive Power Steering Interior Noise Using frequency Analysis (유압식 자동차 동력조향장치 실내소음에 고압호스가 미치는 영향의 주파수 분석을 통한 연구)

  • Jeon, S.G.;Shin, J.Y.;Hwang, H.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.51-56
    • /
    • 2002
  • High pressure hose having tuning cables, called 'Resonator hose' is frequently used to attenuate pressure ripple generated by the pump for reducing the vehicle interior noise. A number of studies have been conducted on the resonator hose and its analytical models. However, there are few studies which deal with the influence of resonator hose on vehicle interior noise because the most of studies focused on transmission loss of the resonator hose. This paper presents NVH test results of power steering system and frequency analysis results. In the frequency analysis, both the relations between vibration, pressure ripple and vehicle interior noise and also the design parameters of high pressure hose influencing on vehicle interior noise were discussed. The test was done for various high pressure hose specimens in full turn condition.

  • PDF

Characteristics of Surface Micromachined Capacitive Pressure Sensors for High Temperature Applications (표면 MEMS 기술을 이용한 고온 용량형 압력센서의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper reports the fabrication and characterization of surface micromachined poly 3C-SiC capacitive pressure sensors on silicon wafer operable in touch mode and normal mode for high temperature applications. FEM(finite elements method) simulation has been performed to verify the analytical mode. The sensing capacitor of the capacitive pressure sensor is composed of the upper metal and the poly 3C-SiC layer. Measurements have been performed in a temperature range from $25^{\circ}C$ to $500^{\circ}C$. Fabrication process of designed poly 3C-SiC touch mode capacitive pressure sensor was optimized and would be applicable to capacitive pressure sensors that are required high precision and sensitivity at high pressure and temperature.

A Study on the Behavior Characteristics of Diesel Spray by Using a High Pressure Injection System with Common Rail Apparatus

  • Yeom, Jeong-Kuk;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1371-1379
    • /
    • 2003
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 22 MPa to 112 MPa using a high pressure injection system (ECD-U2). Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

A Study on Wind Pressure inside Cheonan High Speed Train Station (고속전철 천안역사 내부의 풍압연구)

  • Won Chan-Shik;Kim Sa Ryang;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.843-846
    • /
    • 2002
  • Unlike ordinary train, the HST(High Speed Train) is operated at a very high speed, which may cause pressure transient problems when the HST is passing through a station. In the present study, the wind pressure caused by the passing HST was measured in the Cheonan HST station and compared with the numerical simulations. For the measurement, the HST was passing through the station at speeds of 240 km/h north bound and 150 km/h south bound. MEMS based differential pressure transducers are used to measure pressure variation at various locations in the station. It is shown from the results that measured data are in good agreement with CFD simulation with moving mesh technique for the train movement. With the present validation of CFD simulation, the CFD simulation may effectively aid the design of future HST station.

  • PDF