Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.3.145

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity  

Jung, Young (Department of Mechanical Engineering Korean Advanced Institute of Science and Technology (KAIST))
Cho, Hanchul (Precision Mechanical Process and Control R&D Group Korea Institute of Industrial Technology (KITECH))
Publication Information
Journal of Sensor Science and Technology / v.31, no.3, 2022 , pp. 145-150 More about this Journal
Abstract
The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.
Keywords
Flexible pressure sensors; Three-dimensional structure; High sensitivity; Healthcare monitoring; Motion recognition; Human-machine interface;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 O. Atalay, A. Atalay, J. Gafford, and C. Walsh, "A Highly Sensitive Capacitive-Based Soft Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer", Adv. Mater. Tech., Vol. 3, No. 1, pp. 1700237(1)-1700237(8), 2017.   DOI
2 H. Li, Y. Zhang, H. Dai, W. Tong, Y. Zhou, J. Zhao, and Q. An, "A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light", Nanoscale, Vol. 10, No. 12, pp. 5489-5495, 2018.   DOI
3 Y. Zang, F. Zhang, C.-a. Di, and D. Zhu, "Advances of flexible pressure sensors toward artificial intelligence and health care applications", Mater. Horiz., Vol. 2, No. 2, pp. 140-156, 2015.   DOI
4 Q. Gao, H. Meguro, S. Okamoto, and M. Kimura, "Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies", Langmuir, Vol. 28, No. 51, pp. 17593-17596, 2012.   DOI
5 J. Ge, L. Sun, F. R. Zhang, Y. Zhang, L. A. Shi, H. Y. Zhao, H. W. Zhu, H. L. Jiang, and S. H. Yu, "A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties", Adv. Mater., Vol. 28, No. 4, pp. 722-728, 2016.   DOI
6 Z. Ma, W. Wang, and D. Yu, "Highly Sensitive and Flexible Pressure Sensor Prepared by Simple Printing Used for Micro Motion Detection", Adv. Mater. Interfaces, Vol. 7, No. 2, pp. 1901704(1)-1901704(7), 2019.   DOI
7 M. Wang, N. Zhang, Y. Tang, H. Zhang, C. Ning, L. Tian, W. Li, J. Zhang, Y. Mao, and E. Liang, "Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics", J. Mater. Chem. A Mater. , Vol. 5, No. 24, pp. 12252-12257, 2017.   DOI
8 B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, "Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics", Adv. Funct. Mater., Vol. 24, No. 34, pp. 5427-5434, 2014.   DOI
9 J. H. Kwon, J. Jeong, Y. Lee, S. Biswas, J. K. Park, S. Lee, D. W. Lee, S. Lee, J. H. Bae and H. Kim, "Importance of Architectural Asymmetry for Improved Triboelectric Nanogenerators with 3D Spacer Fabrics", Macromol. Res., Vol. 29, No. 6, pp. 443-447, 2021.   DOI
10 D. K. Kim, J. B. Jeong, K. Lim, J. Ko, P. Lang, M. Choi, S. Lee, J. H. Bae and H. Kim, "Improved Output Voltage of a Nanogenerator with 3D Fabric", J. Nanosci. Nanotechnol., Vol. 20, No. 8, pp. 4666-4670, 2020.   DOI
11 S. Chen, B. Zhuo, and X. Guo, "Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range", ACS Appl. Mater. Interfaces, Vol. 8, No. 31, pp. 20364-20370, 2016.   DOI
12 S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat. Mater., Vol. 9, No. 10, pp. 859-864, 2010.   DOI
13 B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, "Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics", Adv. Funct. Mater., Vol. 24, No. 34, pp. 5427-5434, 2014.   DOI
14 J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, and H. Ko, "Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins", Acs Nano., Vol. 8, No. 5, pp. 4689-4697, 2014.   DOI
15 S. Kang, J. Lee, S. Lee, S. Kim, J.-K. Kim, H. Algadi, S. Al-Sayari, D.-E. Kim, D. Kim and T. Lee, "Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing", Adv. Electr. Mater., Vol. 2, No. 12, 2016.
16 B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, and X. Chen, "Microstructured graphene arrays for highly sensitive flexible tactile sensors", Small, Vol. 10, No. 18, pp. 3625-3631, 2014.   DOI
17 X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent Progress in Electronic Skin", Adv. Sci. (Weinh), Vol. 2, No. 10, pp. 1500169(1)-1500169(22), 2015.   DOI
18 A. Chortos, J. Liu, and Z. Bao, "Pursuing prosthetic electronic skin", Nat. Mater., Vol. 15, No. 9, pp. 937-950, 2016.   DOI
19 K. Kim, J. Choi, Y. Jeong, I. Cho, M. Kim, S. Kim, Y. Oh, and I. Park, "Highly Sensitive and Wearable Liquid MetalBased Pressure Sensor for Health Monitoring Applications: Integration of a 3D-Printed Microbump Array with the Microchannel", Adv. Healthc. Mater., Vol. 8, No. 22, pp. e1900978(1)-e1900978(10), 2019.
20 B. Park, Y. Jung, J. S. Ko, J. Park and H. Cho, "Self-Restoring Capacitive Pressure Sensor Based on Three-Dimensional Porous Structure and Shape Memory Polymer", Polym. (Basel), Vol. 13, No. 5, pp. 824(1)-824(9), 2021.
21 D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T. S. Kim, and I. Park, "Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer", ACS Appl. Mater. Interfaces, Vol. 8, No. 26, pp. 16922-16931, 2016.   DOI
22 C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. Tok and Z. Bao, "Highly skin-conformal microhairy sensor for pulse signal amplification", Adv. Mater., Vol. 27, No. 4, pp. 634-640, 2015.   DOI
23 W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, "Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques", Adv. Funct. Mater., Vol. 24, No. 22, pp. 3299-3304, 2014.   DOI
24 T. Gong, H. Zhang, W. Huang, L. Mao, Y. Ke, M. Gao, and B. Yu, "Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring", Carbon, Vol. 140, pp. 286-295, 2018.   DOI
25 H. H. Lee, J. H. Choi, J. I. Ahn, C. S. Kim, and J. K. Shin, "A Simple Capacitive Sensor Array Based on a Metal-Insulator-Metal Structure", J. Sens. Sci. Technol., Vol. 21, No. 2, pp. 83-89, 2012.   DOI
26 J. Choi, D. Kwon, K. Kim, J. Park, D. D. Orbe, J. Gu, J. Ahn, I. Cho, Y. Jeong, Y. Oh, and I. Park, "Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler toward High Performance Capacitive Pressure Sensors", ACS Appl. Mater. Interfaces, Vol. 12, No. 1, pp. 1698-1706, 2020.   DOI
27 N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, and C. F. Guo, "Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity", Nat. Commun., Vol. 11, No. 1, pp. 209(1)-209(9), 2020.   DOI
28 X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, "Silkmolded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals", Adv. Mater., Vol. 26, No. 9, pp. 1336-1342, 2014.   DOI
29 Y. Jung, T. Lee, J. Oh, B. G. Park, J. S. Ko, H. Kim, J. P. Yun and H. Cho, "Linearly Sensitive Pressure Sensor Based on a Porous Multistacked Composite Structure with Controlled Mechanical and Electrical Properties", ACS Appl. Mater. Interfaces, Vol. 13, No. 24, pp. 28975-28984, 2021.   DOI
30 Y. Jung, J. Choi, W. Lee, J. S. Ko, I. Park and H. Cho, "Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres", Adv. Funct. Mater., pp. 2201147(1)-2201147(12), 2022.
31 S. J. Woo, J. H. Kong, D. G. Kim, and J. M. Kim, "A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors", J. Mater. Chem. C, Vol. 2, No. 22, pp. 4415-4422, 2014.   DOI
32 H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, "Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars", Acs Nano., Vol. 9, No. 10, pp. 9974-9985, 2015.   DOI
33 Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, "Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity", ACS Nano, Vol. 12, No. 3, pp. 2346-2354, 2018.   DOI
34 Y. E. Kwon, Y. Y. Kim, Y. G. Lee, D. K. Lee, O. W. Kwon, S. W. Kang, and K. H. Lee, "Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes", J. Sens. Sci. Technol., Vol. 27, No. 6, pp. 397-402, 2018.   DOI
35 D. H. Kwon, J. H. Kwon, J. Jeong, Y. Lee, S. Biswas, D. W. Lee, S. Lee, J. H. Bae and H. Kim, "Textile Triboelectric Nanogenerators with Diverse 3D-Spacer Fabrics for Improved Output Voltage", Electronics, Vol. 10, No. 8, 2021.