• Title/Summary/Keyword: high-manganese steel

Search Result 84, Processing Time 0.023 seconds

Effects of alloying elements(Cr, Mn) on corrosion properties of high manganese steel in 3.5% chloride environments and sour gas environment (염수 및 Sour gas환경에서 고 망간강의 내식성에 미치는 합금원소 Mn, Cr의 영향)

  • Kim, Hui-San;Hyeon, Yeong-Min;Lee, Sun-Gi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.39-42
    • /
    • 2013
  • 자동차 및 에너지 산업의 적용을 목표로 고망간강의 기계적 성질 향상 연구가 활발히 진행된 반면 내식성 연구는 미비하다. 본 연구에서는 염수 환경 및 H2S 환경에서 4종의 고망간강의 내식성에 미치는 크롬 및 망간의 영향을 조사하였다. 비교재로 사용된 탄소강 대비 실험재의 부식 속도는 침지 실험을 통해 얻어졌다. 또한 내식성 기구 고찰을 위하여 상평형 프로그램을 통하여 녹 층을 예측하고, 침지실험으로부터 얻어진 녹 층을 XRD, SEM-EDS 및 TEM-EDS로 분석하였다. 3.5% NaCl 용액에서 크롬 및 망간이 모두 내식성을 향상시킨 반면, synthetic seawater에서는 크롬만이 내식성을 향상시켰다. 또한 이들 염수 환경과 달리 H2S 환경에서 크롬과 망간 모두 내식성을 향상시키지 못했다. 환경에 따라 강의 내식성에 미치는 합금 원소의 영향이 상이한 원인은 각각의 환경에서 형성된 녹층의 구성 물질의 차이에 의한 것으로 이에 대하여는 본문의 된 녹 층 분석 결과에서 자세히 설명되었다.

  • PDF

Leaching Characteristics of Arsenic and Heavy Metals and Stabilization Effects of Limestone and Steel Refining Slag in a Reducing Environment of Flooded Paddy Soil (담수된 논토양의 환원 환경에서 비소 및 중금속의 용출특성과 석회석 및 제강슬래그의 안정화 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Ha-Jin;Yu, Chan
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.251-263
    • /
    • 2011
  • In order to investigate treatment effects of limestone and steel refining slag for paddy soils contaminated with arsenic and heavy metals, a lab-column test was carried out under reducing environments of flooded paddy soils. In conditions of the flooded paddy soils, at the point of time when iron and manganese were reduced and leached rapidly, heavy metals also leached rapidly, and some leachate samples from an untreated soil exceeded regulatory standards. On the contrary, all samples from soils treated with limestone 5% and steel refining slag 5% respectively were below the regulatory standards, showing much lower heavy metal concentrations than in the untreated soil. Arsenic increased continuously during the observation period according to its typical characteristics, and along with decreasing redox potential, arsenic was expected to leach as $H_3AsO_3$-of form $A^{3+}$ with high mobility and strong toxicity. Limestone and steel refining slag showed high treatment effects against heavy metals present in soil and steel refining slag especially showed the high treatment effects against arsenic.

Formation of Retainted Austenite and Mechanical Properties of 4~8%Mn Hot Rolled TRIP Steels (4~8%Mn 열연 TRIP강의 잔류오스테나이트 생성과 기계적 성질)

  • Kim D. E.;Park Y. K.;Lee O. Y.;Jin K. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.115-120
    • /
    • 2005
  • The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The $4\~8\%$ Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and furnace cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $625^{\circ}C$ for 6 hrs was about $50\;vol.\%$ in the $8\%Mn$ steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The maximum strength-ductility combination of 40,000 $MPa{\cdot}\%$ was obtained when the $8\%Mn$ steel reversely transformed at $625^{\circ}C$ for 12 hrs. However, it's property was significantly decreased at higher holding temperature of $675^{\circ}C$ resulting from the decrease of ductility.

Visco-Elastic Properties of Glass Fiber Manufactured by Slag Material (슬래그 원료를 사용해서 제조된 유리섬유의 점탄성 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lee, Youngjin;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2019
  • This study investigated the influence of the viscoelastic property of slag when producing glass fiber, MFS631 with 60% of manganese slag, 30% of steel slag, and 10% of silica stone. To fabricate the MFS631 glass bulk, slag materials were placed in an alumina crucible, melted at $1,550^{\circ}C$ for 2 h, and then annealed at $600^{\circ}C$ for 2 h. It was found that glass is non-crystalline through X-ray diffraction analysis. MFS631 fiber was produced at speed in the range of 100~300 rpm at $1,150^{\circ}C$. The loss modulus (G") and storage modulus (G') of the produced glass fiber were evaluated at high temperatures. G' and G" of MFS631 were greater than $893^{\circ}C$, and the modulus value was 136,860 pa. This is similar to the results of a general E-glass fiber graph. Therefore, it was concluded that its spinnability is similar to that of E-glass fiber; therefore, it can be commercialized.

Effect of simulated double cycle welding on HAZ microstructure for HSLA steels

  • El-Kashif, Emad F.;Morsy, Morsy A.
    • Advances in materials Research
    • /
    • v.7 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • High Strength low alloy steels containing various levels of C, Nb and Mn were used and for each of which, a simulated double thermal cycle was applied with the same first peak temperature and different second peak temperatures to produce HAZ microstructure corresponding to multi-pass weld. Effect of double cycle second temperature on the microstructure was observed and compared with single cycle results obtained from previous works, it was found that the percentage of martensite austenite constituent (MA) increases by Nb addition for all steels with the same Mn content and the increase in Mn content at the same Nb content shows an increase in MA area fraction as well. MA area fraction obtained for the double cycle is larger than that obtained for the single cycle for all steels used which imply that MA will have great role in the brittle fracture initiation for double cycle and the inter-pass temperature should be controlled for medium and high-carbon Mn steel to avoid large area fraction of MA. The beneficial effects of Niobium obtained in single pass weld were not observed for the double cycle or multi pass welds.

Effect of Silica and Iron on the Fouling Tendency of Reverse Osmosis Membrane for Treating Wastewater from an Integrated Iron and Steel Mill (역삼투막을 이용한 제철폐수 처리 시 실리카 및 철 이온이 막 폐색에 미치는 영향)

  • Oh, Hee-Wan;Lee, Chae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.547-553
    • /
    • 2018
  • An integrated iron and steel mill uses a large amount of water and produces wastewater which contains various contaminants such as iron, manganese, etc. Especially, in some regions of Southeast Asia, the concentration of silica in iron and steel mill wastewater is higher than in other countries. Silica is known to be one of the main causes for fouling in the membrane processes for water reuse. In cases of high concentrations of silica in iron and steel mill wastewater, the ferrous silicate tends to be formed. This could lead to higher fouling tendency depositing on the membrane surface. Therefore we conducted a pilot test to investigate the effect of silica and iron on the fouling tendency of reverse osmosis (RO) membrane for treating two types of wastewater from an integrated iron and steel mill. In this case of treated wastewater from iron and steel mill, RO pilot plant was operated with the fluxes 15.9LMH and 18.8LMH for 112 days to investigate the fouling characteristics. The results found that the fluctuation of flux was much wider than the average flux and the minimum permeability was low at 78%. In the case of treated runoff from an integrated iron and steel mill, the average concentration of iron was lower than in wastewater. RO pilot test was conducted with the flux 18.8LMH for 46 days. The results found that runoff had a lower fouling tendency and pre-treatment using microfiltration (MF) could minimize the fouling problem of RO.

2-D & 3-D Observations on the Microstructure of Super Bainite TRIP Steels using Total Analysis System (TAS(Total Analysis System)을 이용한 SB-TRIP강에서의 2-D & 3-D 미세구조 분석 연구)

  • Seol, J.B.;Lee, B.H.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • It has been widely reported that carbide-free bainitic steels or super-bainite TRIP (SB-TRIP) steels for the automotive industry are a new family of steels offering a unique combination of high strength and ductility. Hence, it is important to exactly evaluate the volume fraction of RA and to identify the 3-D morphology of constituent phases, because it plays a crucial role in mechanical properties. Recently, as electron back-scattered diffraction (EBSD) equipped with focused ion beam (FIB) has been developed, 3-D EBSD technique for materials science are used to these steels. Moreover, newly developed atom probe tomography (APT) technique can provide the exact distribution and chemical concentration of alloying elements in a sub-nm scale. The APT analysis results indicate exactly the distribution and composition of alloying elements in the austenite and bainite phases of SB-TRIP steels with the atomic-scale resolution. And thus, no partitioning of aluminum and manganese atoms was showed between the austenite containing $7.73{\pm}0.39$ at% C and the bainitic ferrite associated with $0.22{\pm}0.06$ at% C in SB-TRIP steel.

Characterization and Emission/Absorption Study of a Grimm-type Glow discharge source in the application of high frequency Glow Discharge (고주파 글로우 방전을 이용한 GRIMM형 방전원의 특성 및 방출/흡광분석법 연구)

  • Suh, Jung-Gee;Woo, Jin-Chun
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1994
  • A conventional Grimm-type glow discharge source was constructed and applied to radio-frequency(13.56MHz) discharge for metal and ceramic analysis. We investigated the emission spectrum for aluminium and aluminium oxide and the influence of discharge operating paramaters including argon pressure, rf-power and DC-bias voltages at the sample-side electrode. Scanning Electron Microscope(SEM) also was used to investigate the effect of rf-sputtering on the microstructure formation of the aluminium oxide. Linear analytical calibration curves were constructed for Manganese and zinc element in samples of low alloy steel(BAS 401-405) and brass(NIST 1108-1117).

  • PDF

Properties and Fabrication of Glass Fiber using Recycled Slag Materials (슬래그 재활용 원료를 이용한 유리섬유 제조 및 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.763-768
    • /
    • 2018
  • In this study, glass fibers are fabricated via a continuous spinning process using manganese slag, steel slag, and silica stone. To fabricate the glass fibers, raw materials are put into an alumina crucible, melted at $1550^{\circ}C$ for 2 hrs, and then annealed at $600^{\circ}C$ for 2 hrs. We obtain a black colored glass. We identify the non-crystalline nature of the glass using an XRD(x-ray diffractometer) graph. An adaptable temperature for spinning of the bulk marble glass is characterized using a high temperature viscometer. Spinning is carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1109^{\circ}C$ to $1166^{\circ}C$, while the winder speed is in the range of 100rpm to 250rpm. We investigate the various properties of glass fibers. The average diameters of the glass fibers are measured by optical microscope and FE-SEM. The average diameter of the glass fibers is $73{\mu}m$ at 100rpm, $65{\mu}m$ at 150rpm, $55{\mu}m$ at 200rpm, and $45{\mu}m$ at 250rpm. The mechanical properties of the fibers are confirmed using a UTM(Universal materials testing machine). The average tensile strength of the glass fibers is 21MPa at 100rpm, 31MPa at 150rpm, 34MPa at 200rpm, and 45MPa at 250rpm.

A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature (극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구)

  • ;Maekawa, I.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.