Leaching Characteristics of Arsenic and Heavy Metals and Stabilization Effects of Limestone and Steel Refining Slag in a Reducing Environment of Flooded Paddy Soil

담수된 논토양의 환원 환경에서 비소 및 중금속의 용출특성과 석회석 및 제강슬래그의 안정화 효과 검토

  • Yun, Sung-Wook (Insti. of Agric. & Life Sci., Gyeongsang National Univ.) ;
  • Kang, Sin-Il (Graduate school, Gyeongsang National Univ.) ;
  • Jin, Hae-Geun (Graduate school, Gyeongsang National Univ.) ;
  • Kim, Ha-Jin (Graduate school, Gyeongsang National Univ.) ;
  • Yu, Chan (Dept. of Agric. Engineering, Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 강신일 (경상대학교 대학원) ;
  • 진혜근 (경상대학교 대학원) ;
  • 김하진 (경상대학교 대학원) ;
  • 유찬 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2011.09.27
  • Accepted : 2011.12.20
  • Published : 2011.12.30

Abstract

In order to investigate treatment effects of limestone and steel refining slag for paddy soils contaminated with arsenic and heavy metals, a lab-column test was carried out under reducing environments of flooded paddy soils. In conditions of the flooded paddy soils, at the point of time when iron and manganese were reduced and leached rapidly, heavy metals also leached rapidly, and some leachate samples from an untreated soil exceeded regulatory standards. On the contrary, all samples from soils treated with limestone 5% and steel refining slag 5% respectively were below the regulatory standards, showing much lower heavy metal concentrations than in the untreated soil. Arsenic increased continuously during the observation period according to its typical characteristics, and along with decreasing redox potential, arsenic was expected to leach as $H_3AsO_3$-of form $A^{3+}$ with high mobility and strong toxicity. Limestone and steel refining slag showed high treatment effects against heavy metals present in soil and steel refining slag especially showed the high treatment effects against arsenic.

본 연구에서는 폐금속 광산 주변 비소와 중금속으로 오염된 논토양을 효과적으로 복원하기 위한 안정화제로써 석회석과 제강슬래그의 처리효과와 그 적용성을 검토하기 위해 담수답의 환원 환경을 적용한 컬럼 실험을 실시하였다. 실험결과 담수된 논토양의 환원 환경에서는 철과 망간 성분이 환원되어 급격하게 용출되는 시점에 중금속 성분도 급격하게 용출되는 경향이 나타났으며, 대조구(무처리)의 경우 침출수에서 오염기준을 초과한 시료가 나타났다. 그러나 석회석 5%와 제강슬래그 5%로 각각 처리한 토양은 모두 오염기준 이하로 대조구보다 중금속 농도가 매우 낮게 검출되었다. 석회석과 제강슬래그 모두 담수답의 환원 환경에서 좋은 처리효과를 나타내어 효과적인 안정화제로 판단되었으며, 특히 제강슬래그는 담수답 환경에서 지속적으로 증가하는 비소 성분에 대해서 좋은 처리효과를 나타내었다.

Keywords

References

  1. Atta, S. Kh., S. A. Mohammed, O. Van Cleemput, and A. Zayed. 1996. Transformations of iron and manganese under controlled Eh, Eh-pH conditions and addition of organic matter. Soil Technol. 9: 223-237 https://doi.org/10.1016/S0933-3630(96)00013-X
  2. Basta, N. T. and S. L. McGowen. 2004. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut. 127:73-82. https://doi.org/10.1016/S0269-7491(03)00250-1
  3. Bolan, N. S., D. C. Adriano, and D. Curtin. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. in Agron. 8: 215-272.
  4. Carlson, L., J. M. Bigham, U. Schwertmann, A. Kyek, and F. Wagner. 2002. Scavenging of As form acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ. Sci. Technol. 36: 1712-1719. https://doi.org/10.1021/es0110271
  5. Chi, H. K. 2005. A study on removal efficiency of heavy metals and possibility of soildification/ stabilization in mine tailings by column test. Master Thesis. Semyung University, Korea.
  6. Chung, I. J. 2001. Immobilization of heavy-metals in the tailing of closed metal mining site. Ph.D. Thesis. Sogang University, Korea.
  7. Hartley, W., R. Edwards, and N. W. Lepp. 2004. Arsenic and heavy metal mobility in iron oxideamended contaminated soils as evaluated by short-and long-term leaching tests. Environ. Pollut. 131: 495-504. https://doi.org/10.1016/j.envpol.2004.02.017
  8. Janos, P., J. Vavrova, L. Herzogova, and V. Pilarova. 2010. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma 159: 335-341. https://doi.org/10.1016/j.geoderma.2010.08.009
  9. Jeon, J. W., B. H. Bae, and Y. H. Kim. 2010. Applicability test of various stabilizers for heavy metals contaminated soil from smelter area. Korean Geo-Environ. Soc. 11: 63-75.
  10. Jun, K. S. and S. E. Oh. 2002. Chemical fixation of heavy metal in contaminated soil from abandoned mine land. KSCE. J. Civil Engin. 22: 67-80.
  11. Jung, B. G., J. W. Choi, E. S. Yun, J. H. Yoon, and Y. H. Kim. 2001. Monitoring on chemical properties of bench marked upland soils in Korea. Korean J. Soil Sci. Fert. 34: 326-332.
  12. Kaasalainen, M. and M. Yli-Halla. 2003. Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut. 126: 225-233. https://doi.org/10.1016/S0269-7491(03)00191-X
  13. Kim, S. S. 2005. Heavy metal pollution characteristics and the remediation around abandoned mines in the Nakdong river basin. Ph. D. Thesis. Yeungnam University, Korea.
  14. Kim, T. H. 2010. Efficiency of chemical remediation technology and stabilization mechanism in heavy metal contaminated soil. Master Thesis. Kangwon National University, Korea.
  15. Kumpiene, J., A. Lagerkvist, and C. Maurice. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Manage. 28:215-225. https://doi.org/10.1016/j.wasman.2006.12.012
  16. Kuo, S. and A.S. Baker. 1980. Sorption of copper, zinc and cadmium by some acid soils. Soil Sci. Soc. Am. J. 44: 969-974. https://doi.org/10.2136/sssaj1980.03615995004400050019x
  17. Lee, E. G. 2007. A study on the in-situ stabilization of heavy metals contaminated soils around the abandoned mine area. Master Thesis. Kwangwoon University, Korea.
  18. Lee, S. H., E. Y. Kim, H. Park, J. H. Yun, and J. G. Kim. 2011. In situ stabilization of arsenic and metalcontaminated agricultural soil using industrial byproducts. Geoderma 161: 1-7. https://doi.org/10.1016/j.geoderma.2010.11.008
  19. Lee, T. M., H. Y. Lai, and Z. S. Chen. 2004. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 57: 1459-1471. https://doi.org/10.1016/j.chemosphere.2004.08.094
  20. Lee, J. W. 2007. Study on the management of abandoned metal mines after restoration. Master Thesis. Kwangwoon University, Korea.
  21. Lu, P and C. Zhu. 2011. Arsenic Eh-pH diagrams at $25^{\circ}C$ and 1 bar, Environ Earth Sci. 62: 1673-1683. DOI 10.1007/s12665-010-0652-x.
  22. McLean, J. E, and B. E. Bledsoe. 1992. Behavior of metals in soils, ground water issue. EPA/540/S-92/018. U.S. EPA.
  23. Mench, M., J. Vangronsveld, N. W. Lepp, R. and Edwards. 1998. Physico-chemical aspects and efficiency of trace element immobilization by soil amendments. In: Vangronsveld, J., Cunningham, S.D. (Eds.), metal-contaminated soils; In situ inactivation and phytorestoration. Springer-Verlag, pp. 151-182
  24. Minamikawa, K. and N. Sakai. 2005. The effect of water management based on soil redox potential on methane emission from two kinds of paddy field in Japan, Agric. Ecosyst. Environ. 107: 397-407. https://doi.org/10.1016/j.agee.2004.08.006
  25. Ministry of Environment. 2009a. Standard methods of soil sampling and analysis. Ministry of Environment, Korea.
  26. Ministry of Environment. 2009b. Standard methods of water sampling and analysis. Ministry of Environment, Korea.
  27. Narwal, R. P., B. R. Singh, and B. Salbu. 1999. Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun. Soil Sci. Plant Anal. 30: 1209-1230. https://doi.org/10.1080/00103629909370279
  28. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  29. Park, D. H., Y. C. Cho, and S. I. Choi. 2010. The laboratory column examination of stabilization for agricultural land contaminated by heavy metals using sequential stabilization. Soil Groundwater Env. 15: 39-45.
  30. Pueyo, M., J. Sastre, E. Hernandez, M. Vidal, J. F. Lopez-Sanchez, and G. Rauret. 2003. Prediction of trace element mobility in contaminated soils by sequential extraction. J. Environ. Qual. 32: 2054-2066. https://doi.org/10.2134/jeq2003.2054
  31. Ramos, L., L. M. Hernandez, and M. J. Gonzalez. 1994. Sequential fraction of copper, lead, cadmium and zinc in soils from near Donana National Park. J. Environ. Qual. 23: 50-57.
  32. Shin, I. J. 2003. Translocation of heavy metals to some crops in paddy and upland soil around abandoned mines. Master Thesis. Chungnam National University, Korea.
  33. Ullrich, S. M., M. H. Ramsey, and E. Helios-Rybicka. 2003. Total and exchangeable of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in upper Silesia, Poland. Appl. Geochem. 14: 187-196.
  34. Ure, A. M., P. H. Quevauviller, H. Muntau, and B. Griepink. 1993. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. J. Environ. Anal. Chem. 51: 135-145. https://doi.org/10.1080/03067319308027619
  35. Wenzel, W. W., N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi, and D. D. Adriano. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimca Acta. 436: 309-323. https://doi.org/10.1016/S0003-2670(01)00924-2
  36. Yonhap News Agency, Title of article. http://www.yonhapnews.co.kr. Accessed 25 Mar. 2008.
  37. Yun, S. W., S. I. Kang, H. G. Jin, H. J. Kim, Y. C. Lim, J. M. Yi. and C. Yu. 2011. An investigation of treatment effect of limestone and steel refining slag for stabilization of arsenic and heavy metal in the farmland soils nearby abandoned metal mine. Korean J. Soil Sci. Fert. 44: 734-744.