Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.6.477

Visco-Elastic Properties of Glass Fiber Manufactured by Slag Material  

Lee, Ji-Sun (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Sun-Woog (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Ra, Yong-Ho (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Youngjin (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Lim, Tae-Young (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Jonghee (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Jeon, Dae-Woo (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.6, 2019 , pp. 477-482 More about this Journal
Abstract
This study investigated the influence of the viscoelastic property of slag when producing glass fiber, MFS631 with 60% of manganese slag, 30% of steel slag, and 10% of silica stone. To fabricate the MFS631 glass bulk, slag materials were placed in an alumina crucible, melted at $1,550^{\circ}C$ for 2 h, and then annealed at $600^{\circ}C$ for 2 h. It was found that glass is non-crystalline through X-ray diffraction analysis. MFS631 fiber was produced at speed in the range of 100~300 rpm at $1,150^{\circ}C$. The loss modulus (G") and storage modulus (G') of the produced glass fiber were evaluated at high temperatures. G' and G" of MFS631 were greater than $893^{\circ}C$, and the modulus value was 136,860 pa. This is similar to the results of a general E-glass fiber graph. Therefore, it was concluded that its spinnability is similar to that of E-glass fiber; therefore, it can be commercialized.
Keywords
Glass composition; Manganese slag; Filament fiber; Visco-elastic; Glass fiber properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Shen, D. J. Green, R. E. Tressler, and D. L. Shelleman, J. Non-Cryst. Solids, 324, 277 (2003). [DOI: https://doi.org/10.1016/S0022-3093(03)00260-6]   DOI
2 A. Chimanski, P. F. Cesar, C. Fredericci, and H. N. Yoshimura, ram. Int., 41, 10000 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.04.082]
3 P. Hrma and S. S. Han, J. Non-Cryst. Solids, 358, 1818 (2012). [DOI: https://doi.org/10.1016/j.jnoncrysol.2012.05.030]   DOI
4 B. Y. Lee and Y. C. Kim, J. Korean Acad.-Ind. Coop. Soc., 15, 3990 (2014). [DOI: https://doi.org/10.5762/KAIS.2014.15.6.3990]
5 Z. Liang and H. L. Williams, J. Appl. Polym. Sci., 44, 699 (1992). [DOI: https://doi.org/10.1002/app.1992.070440417]   DOI
6 H. M. Laun, Colloid Polym. Sci., 262, 257 (1984). [DOI: https://doi.org/10.1007/BF01410464]   DOI
7 S. E. Barbosa and J. M. Kenny, J. Vinyl Addit. Technol., 1, 269 (1995). [DOI: https://doi.org/10.1002/vnl.730010415]   DOI
8 R. S. Stone, P. N. Brett, and B. S. Evans, Mechatronics, 8, 85 (1998). [DOI: https://doi.org/10.1016/S0957-4158(97)00042-1]   DOI
9 J. S. Lee, S. W. Kim, Y. H. Ra, T. Y. Lim, Y. J. Lee, D. W. Jeon, and J. H. Kim, Korean J. Mater. Res., 28, 763 (2018). [DOI: https://doi.org/10.3740/MRSK.2018.28.12.763]   DOI
10 Q. Zheng and J. C. Mauro, J. Am. Ceram. Soc., 100, 6 (2017). [DOI: https://doi.org/10.1111/jace.14678]   DOI
11 M. C. Weinberg, J. Am. Ceram. Soc., 74, 1905 (1991). [DOI: https://doi.org/10.1111/j.1151-2916.1991.tb07807.x]   DOI
12 C. S. Ray, X. Fang, and D. E. Day, J. Am. Ceram. Soc., 83, 865 (2000). [DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01287.x]   DOI
13 T. S. Kim, D. S. Kil, H. S. June, E. H. Kang, and S. S. Yoon, Anal. Sci. Technol., 13, 775 (2000).
14 T. G. Mezger, Applied Rheology (Anton Paar GmbH, Austria, 2014) p. 137.
15 B. H. Kim, Glass Technology (Chungmungak, 2009) p. 431.
16 J. H. Im and S. W. Lee, Korean J. Met. Mater., 42, 102 (2004).
17 F. T. Wallenberger, J. B. Macchesney, R. Naslain, and H. D. Ackler, Advanced Inorganic Fibers - Process, Structures, Properties, Applications (Kluwer Academic Publishers, Netherlands, 2000) p. 149.
18 F. T. Wallenberger, J. B. Macchesney, R. Naslain, and H. D. Ackler, Advanced Inorganic Fibers - Process, Structures, Properties, Applications (Kluwer Academic Publishers, Netherlands, 2000) p. 93.
19 H. Iba, T. Chang, and Y. Kagawa, Compos. Sci. Technol., 62, 2043 (2002). [DOI: https://doi.org/10.1016/S0266-3538(02)00156-2]   DOI
20 K. C. Song and I. J. Chung, Korean J. Chem. Eng., 3, 393 (1996).
21 C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe. Chem. Soc. Rev., 41, 4708 (2012).   DOI
22 J. D. Kunicki and A. C. Lasaga, Am. Mineral., 73, 941 (1988).