• Title/Summary/Keyword: high-gain feedback

Search Result 206, Processing Time 0.028 seconds

Design of High-Gain OP AMP Input Stage Using GaAs MESFETs (갈륨비소 MESFET를 이용한 고이득 연산 증폭기의 입력단 설계)

  • 김학선;김은노;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-79
    • /
    • 1992
  • In the high speed analog system satellite communication system, video signal processing and optical fiber interface circuits, GaAs high gain operational amplifier is advantageous due to obtain a high gain because of its low transconductance and other drawbacks, such as low frequency dispersion and process variation. Therefore in this paper, a circuit techniques for improving the voltage gain for GaAs MESFET amplifier is presented. Also, various types of existing current mirror and current mirror proposed are compared.To obtain the high differential gain, bootstrap gain enhancement technique is used and common mode feedback is employed in differential amplifier.The simulation results show that gain is higher than that of basic amplifier about 18.6dB, and stability and frequency performance of differential amplifier are much improved.

  • PDF

Analytical Investigation of the Influence of Rotor Flap Dynamics on Helicopter Flight Control System Feedback Gain Limit (헬리콥터 비행 제어시스템의 피드백 제어 이득 한계에 대한 로터 플랩 동역학의 영향성 분석)

  • Yang, Chang Deok;Lee, Seung Deok;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.217-224
    • /
    • 2020
  • The use of a high gain flight control system to achieve high bandwidth performance increase the instability of a helicopter. To investigate these phenomena numerically, high fidelity EC155B1 helicopter model and simplified flight control system that include actuator, digital processor and noise rejection filter was developed. A study conducts an analytical investigation of roll axis stability of the helicopter model as feedback gain increases. And this study analyzes roll-rate and roll-attitude feedback gains limited by rotor flap mode. The results indicate that the phase delays caused by the filter can severely limit the usable values of the roll-rate and roll-attitude feedback gains.

PID Autotuning Algorithm Based on Saturation Function Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.263-269
    • /
    • 1998
  • We use the slope bounded saturation nonlinear feedback element instead of relay to find ultimate gain and period of linear plant. Saturation nonlinear element reduces the high harmonics of plant output. The reduction of high harmonics improve the accuracy of describing function method used to find ultimate gain and period. We give a simple procedure to find ultimate gain and period with saturation nonlinear element. A PID controller design method with known time delay element is also given, which is very useful when oscillation is not occurred with nonlinear element.

  • PDF

Sensory Feedback for High Dissymmetric Master-Slave Dexterity

  • Cotsaftis, Michel;Keskinen, Erno
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Conditions are discussed for operating a dissymmetric human master-small (or micro) slave system in best (large position gain-small velocity gain) conditions allowing higher operator dexterity when real effects (joint compliance, link flexion delay and transmission distortion) are taken into account. It is shown that position PD feedback law advantage for ideal case no longer holds, and that more complicated feedback law depending on real effects has to be implemented with adapted transmission line. Drawback is slowdown of master slave interaction, suggesting to use more advanced predictive methods for the master and more intelligent control law for the slave.

Active Vibration Control of Plates Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 평판 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.940-950
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems at high frequencies due to non-collocated sensor/actuator configuration with the DVFB can be alleviated by the proposed FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The dynamics of a clamped plate under forces and moments and the FVF controllers are formulated. The stability of the control system and performance are investigated with the open loop transfer function(OLTF). It is found that the FVF controller has a higher gain margin than the corresponding DVFB controller owing to the rapid roll-off behavior at high frequencies. Although the gain margin cannot be fully utilized because of the enhancement at the high frequencies, the vibration at the modes lower than the tuning frequency is well controlled. This performance of the FVF controller is shown to be improved from that of the DVFB controller. It is, however, noted that the stability around the tuning frequency is very sensitive so that the enhancement in vibration level should be followed. The reduction performance at low frequencies using the FVF controller should be compromised with the enhancement in the vibration at high frequencies while designing the controller.

A general dynamic iterative learning control scheme with high-gain feedback

  • Kuc, Tae-Yong;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1140-1145
    • /
    • 1989
  • A general dynamic iterative learning control scheme is proposed for a class of nonlinear systems. Relying on stabilizing high-gain feedback loop, it is possible to show the existence of Cauchy sequence of feedforward control input error with iteration numbers, which results in a uniform convergance of system state trajectory to the desired one.

  • PDF

An Efficient Bias Circuit of Discrete BJT Component for Hearing Aid (보청기를 위한 개별 BJT 소자의 효과적인 바이어스 회로)

  • 성광수;장형식;현유진
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.16-23
    • /
    • 2003
  • In this paper, we propose an efficient bias circuit of discrete BJT component for hearing aid. The collector feedback bias circuit, widely used for the hearing aid, has a resistor for negative feedback. As the resistor affects AC and DC simultaneously, it is quite difficult to adjust amplifier gain without changing DC bias point. The previous bias circuit also has weak point to be oscillated by the positive feedback of power noise if gain of hearing aid is high. In the proposed circuit, we can reduce the two weak points of the previous circuit by adding a resistor to the collector feedback bias circuit between base and power supply which is $\beta$ times target than the collector resistor. Thus. we can change amplifier gain without changing DC bias point, and reduce power noise gain about 18.5% compare to that of tile previous circuit in the simulation.

Design of Variable Gain Low Noise Amplifier with Memory Effects Feedback for 5.2 GHz Band (5.2 GHz 대역에서 동작하는 기억 기능 특성을 갖는 궤환 회로를 이용한 변환 이득 저잡음 증폭기 설계)

  • Lee, Won-Tae;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • This paper presents a novel gain control system composed of a feedback circuit, Two stage Low Noise Amplifier (LNA) using 0.18 um CMOS technology for 5.2 GHz. The feedback circuit consists of the seven function blocks: peak detector, comparator, ADC, IVE(Initial Voltage Elimination) circuit, switch, storage, and current controller. We focus on detecting signal and designing storage circuit that store the previous state. The power consumption of the feedback circuit in the system can be reduced without sacrificing the gain by inserting the storage circuit. The adaptive front-end system with the feedback circuit exhibits 11.39~22.74 dB gain, and has excellent noise performance at high gain mode. Variable gain LNA consumes 5.68~6.75 mW from a 1.8 V supply voltage.

The determination of state feedback gains of XPTOS for disk drive servomechanism based on BESSEL filter prototype (XPTOS에 의한 디스크 드라이브 서보메커니즘의 구성시 BESSEL 필터 표준 함수에 근거한 상태피드백이득 결정)

  • Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.980-983
    • /
    • 1996
  • This paper presents the method of determining state feedback gains of XPTOS for disk drive servomechanism based BESSEL filter prototype. A typical disk drive actuator can be modeled as second order dynamics for low frequencies. However, the response at higher frequencies shows resonant behavior which cannot be easily modeled. XPTOS consists of the nonlinear control region and the linear control region. In the linear control region, the poles of a second order nominal model of plant must be properly relocated by pole placement technique to attenuate resonant modes at high frequency and to attain minimum time state transition. It is difficult to select position to satisfy this object because velocity feedback gain is subjected to position feedback gain in XPTOS. Here poles of BESSEL filter prototype are selected to determine state feedback gains of XPTOS. Simulation results for disk drive servomechanism using XPTOS having state feedback gains by the proposed method are presented.

  • PDF

Design of an adaptive output feedback controller for robot manipulators (로봇 매니퓰레이터에 대한 출력궤환 적응제어기 설계)

  • 신의석;이강용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.48-55
    • /
    • 1997
  • An adaptive output feedback controller is designed for tracking control of an n-link robot manipulator with unknown load. High-gain obwserver that is used to estimate joint velocities is designed to avoide the restriction of the allowable variation range of unknown parmeters as well as improve the state estimation error. We saturate the control inut outside a domain of interest and use an adaptive law with a parameter projection feature to guarantee boundedness of all the trajectories in the closed-loop system. Simulation resutls on a 2-link manipulator illustrate that when the speed of the high-gain observer is sufficiently high, the proposed controller recovers the performance under state feedback control.

  • PDF