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PID Autotuning Algorithm Based on

Saturation Function Feedback
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Abstract

We use the slope bounded saturation nonlinear feedback element instead of relay to find ultimate gain and
period of linear plant. Saturation nonlinear element reduces the high harmonics of plant output. The reduction of
high harmonics improve the accuracy of describing function method used to find ultimate gain and period. We
give a simple procedure to find ultimate gain and period with saturation nonlinear element. A PID controller

design method with known time delay element is also given, which is very useful when oscillation is not

occurred with nonlinear element.
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1. Introduction simply pushing a single button to tune a controller's
parameters. One of autotuning methods is of the use of
Even though modern control theory has been relay feedback suggested by [1]. The method used the
significantly developed, PID controllers have been relay feedback to generate a self-sustained oscillation in

dominantly used in the industries since field engineers

are familiar with the structure of PID controllers. Many

methods to find PID control parameters, i.e.,
proportional gain, integral time, and derivative time,
have been suggested and commercialized[2].

Automatically setting the parameters called autotuning of

PID controllers has been received much attention

because of reducing a start-up time and easy to use;
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the closed-loop system. With the measurements of the
period and amplitude of oscillation in the plant output,
the ultimate gain and period of unknown plant can be
calculated using describing function approximation,
which corresponds to one point identification in the
Nyquist plot of unknown plant. Based on one point
information on the Nyquist plot, various PID controller
design methods, e.g., Ziegler-Nichols tuning formula and
phase margin and gain margin, can be applied to find
controller parameters. Since the tuning method[1] using
there have been

the relay feedback was introduced,
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Fig. 1. Saturation nonlinear element and its

describing function.

some efforts to develop the PID controller design
method using ultimate gain and period [3, 4, 5]. Since
the describing function approximation used to calcul;'ute
ultimate gain and period is based on the assumption of
which plant output contains only fundamental frequency
component, it is desirable that the output of unknown
plants does not contain the high frequency components.
However relay feedback easily excites the high
frequency component, since relay feedback acts like a
step function, and results in containing the unwanted
frequency components in the plant output. Consequently,
it is possible that there is an error between the ultimate
gain and period calculated from describing function and
real one due to the presence of high harmonics of plant
output. In this paper we use the slope bounded
saturation function instead of relay feedback element to
generate the self-sustained oscillation in the closed-loop
system. Saturation functions reduce the excitation of
high frequency component of plant, hence ultimate gain
and period are more accurate than those obtained by the
use of relay feedback. Moreover since most of

actuators have  nonlinear characteristics in the limit
case, it is expected that plant output can be distorted,
hence it is desirable that a slope of actuator input
signal is less than that of actuator. This point can- be
achieved by setting a small enough slope of saturation
function. However there are several technical problems

to use saturation function as a feedback element; it is
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well known that whenever the Nyquist plot of unknown
plant intersect the negative real axis, a self-sustained
oscillation is possible in the relay feedback case, but it
does not in the saturation function case [6]. We analyze
the existence condition of self-sustained oscillation with
saturation function feedback. Based on the analysis, we
give a simple procedure to find a saturation function
which guarantees the oscillation as well as the reduction
of high harmonics in the plant output. The reduction of
high harmonics in the plant output results in more
accurate identification of ultimate gain and period using
the describing function approximation. We illustrate the

performance comparison between relay feedback and

saturation function.

II. The describing function analysis with
saturation nonlinearity
The describing function method is a popular tool to
analyze periodic solutions for linear time-invariant
dynamic system with nonlinear feedback element. To
have a self-oscillation in the plant output, the following
harmonic balance equation should have a nontrivial

solution[6]
1+GGw) - Ma)=0 (1)

where  G(jw) is the frequency response of plant, a

is the amplitude of fundamental component of plant

Na) is

nonlinear element. When a relay is used for nonlinear

output, and the describing function of
feedback element, the describing function of relay is

given by

N = 4d/( 7a) @

where d is the amplitude of relay. Whenever
G(jw) intersects negative real axis in the Nyquist plot,
the harmonic balance equation (1) has a nontrivial
solution and there is an oscillation in the plant output.
This fact was used to justify the existence of periodic
solution with relay feedback elementj1]. In fact, the

paper[1] used ‘the equation (2) to find N, (@) with a
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taken from the observed amplitude of plant output. The
observed period of plant output and N ,.( a) are taken

as a ultimate period and gain of unknown plant,

respectively.  Since we use the saturation function
defined by
—d x < —dls
sal(x) = { sx —-dls £ x < dls
x> dls

as a nonlinear feedback element to reduce the high
harmonics in the plant output, we need more analysis
for the existence of periodic solution in the output. The
describing function of the saturation nonlinear element

in Fig. 1 is given by

s if d > sa
Nsat(a) = .
%f[arcsin(s—i)+s—a; 1—(5—‘:;)1] if d < sa
(3)
From Fig. 1, one can observe that (<N, <s

Therefore it is possible that if the slope is not large
enough, ie., s{|1/GGw)| at negative real axis, then
there is no periodic solution in the plant output, even if
G(jw) intersects the negative real axis in the Nyquist
plot. Hence the larger slope of saturation nonlinearity is
used, the more class of system, G(jw), is guaranteed
the periodic solution in the closed-loop system. So far
we analyze the existence condition of periodic solution
in the closed-loop system when the saturation function
is used for nonlinear feedback element. The complete
analysis of existence condition of periodic solution in
the closed-loop system with general nonlinear element
can be found in [7, Theorem 10.9]. Since we are
interested in the reduction of high frequency component
in the plant output to improve the accuracy of
describing function approximation, we investigate the
effect of high frequency component of plant output for
finding the ultimate gain using the describing function
method. Suppose that there is a periodic solution in the
closed-loop system with saturation function nonlinear

element. Then the system satisfies

(265)

Journal of IEEE Korea Council Vol. 2, No. 2

W)=~ gn(y(H)

where

Gy
y(#) is the plant output, #x(-) denotes

saturation function nonlinear element, and g is linear

operator in time domain corresponding to  G(jw).
Since y(#) is a periodic signal, we can represent
D=y (H+y,(f) where () and () are

fundamental frequency component and high harmonics of

(),
equivalent to solve both (5) and (6)

respectively Solving the equation (4) is

)
©®

where projection operator P; and P, are defined

== Pugn(y+ vi)

y=—Pgn(n+ i)

by Pi(y)=y; and Py(y)=y—y; =1y, respectively.

Without no loss of generality, we assume that
y(H=a - sinwt. By adding Pgn((a+ da)sinwi)
to both sides of (6), we can rewrite it as

1+ Pygn((a+da)sinwi) =

—{(Pgn(y,+ yy) —Prgn((a+ Sa)sinwd} @)

We obtain the following phasor equation from (7)
1+ Ma+ 8a)G(jw) =
—(l/a){(8a - Na+ a) + ((Pyn(y:+yu)

— Pin((a+ 6a))}YG(jw) ®

Note that since the measurement of plant output
contains high harmonics in general, we add the term
Sa in (7). The right hand side of equation(8) reﬁresents
the error term of describing function approximation and

it causes the error in the calculation of ultimate gain.

If y(£) does not contain high harmonics, ie, y, = 0

and dg = 0, the equation (8) results in equation (1).

Hence it is desirable reducing high harmonics of plant

output. Since the input of plant is the output of

nonlinear element, the amplitude of high harmonics is
increased as the slope is increased when a saturation
function is used as a nonlinear element. The relay

can be considered as the worst case in the sense of
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Fig. 2. The plot of describing function with slope=s.

reduction of high harmonics, since relay can be treated
as the slope =oo. To see the effect of high harmonics
in the calculation of ultimate gain from observed plant
output, suppose that we use the saturation function with

|1/ G(jw)| = &, in the negative real axis,

of

slope s,

and the measured amplitude oscillation is

an=a+d8a If da is a positive number, then a,, >

a. Note that we describe a method to determine the
sign of Ja in the following section. From Fig. 2, we

can figure out the describing function, N(a,,),

calculated from the equation(4) is smaller than the
describing function with the amplitude of plant output in
which does not contain high harmonics. Consequently,

the calculated ultimate gain of plant, which is equal

to M a,,), is smaller than the real ultimate gain of

plant, k. The larger value of Ja cause the larger

error between ultimate gain calculated from describing

function and real one. Therefore it is desirable to use

the smallest slope saturation function as nonlinear

clement as long as oscillation is occurred in the

closed-loop system. Next object is how do we find the

smallest slope of saturation nonlinear element that

guarantee oscillation. Since ({ M - )<s for saturation

function with the slope = s, the smallest slope such

that the equation (1) has a nontrivial solution is equals

(266)

to /.

III. Autotuning with saturation function

To set the lowest slope of saturation nonlinear

element, we need the value of |1/ G(jw)| at negative
real axis. However we do not know it in advance. We
suggest a simple procedure to find a "good" slope of
saturation function in this section; "good" slope means
not necessary the lowest slope, but the slope that can
have an oscillation and achieve a considerable
reduction of high frequency component in the plant
output to improve the accuracy of describing function
approximation. Before testing the plant with nonlinear
element, we know the actuator response curve which is
supplied by actuator manufacture. The maximum slope
of actuator, sma, iS a good starting point. If there is an
oscillation in the output with the slope=sma, we can

measure the amplitude of oscillation, @, = @+ dz and

calculate the corresponding describing function, M a,,),
of the saturation function with the slope=smx using
equation(3), The sign of Ja can be either positive or
negative. We describe how do we determine the sign of
da later on. For the purpose of easy explanation of
idea, suppose that the sign of &z is positive. Even

though the ideal slope equal to k&, we do not know it

in advance. To have an oscillation and to reduce the

high harmonics, we  only conjecture that a new

candidate slope, swew, should be N(a,;) < Spew < Smax.

So we take a new slope as sww = 7M(a,,) where

y>1 to be defined. The value of y depends on high
frequency component effect. Unfortunately we does not
know the high frequency component. We rely on the
"ad hoc" approach. We suggest that y = 1.3, which
means that the high frequency components  effected
approximate 30% to the value of describing function. If
there is a reduction in the plant output, one can try

another saturation nonlinear element with new slope and
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so on. If the calculated value of ultimate gain is
changed little, the value of ultimate gain is taken as the
best estimated one. By the same token, from Fig. 2, it
the calculated value

can be also figured out that

Ma,)>k, for the negative sign of &g. The new
trial slope should be less than Ma,,) . We set a spax
= 7 - Ma,) where 0 < y, <1 . One may use the
71 = 0.7 . We can take the best ultimate gain by the
similar fashion in case of the positive sign of &az. The
remain problem is how do we find the sign of Jz as
we oppose it. The calculated describing function with
the slope = smax, M@,,) < k; when &z > 0 . There
is no oscillation

Man)

hand, there is an

in the closed-loop system with the
slope = since N(a,,) < k;. On the other
oscillation in the closed-loop system

with the slope = Ma,,) when 8z < 0 since Ma,,)

> k. Hence we can determine the sign of &g by

using the calculated describing function as the new
slope. It can be happen that there is no oscillation in
the plant output, when y and y; are too small. This
can be quickly found out from the output of saturation
nonlinear element by using the fact that whenever there
is an oscillation, the output of saturation element is
saturated. We summarize the procedure

for finding the
good slope:

A, start the test with maximum allowable slope and
calculate describing function, Ma,,), using (3) with
observed plant output.

B. (determine the sign of 8q)

set the slope= N(a,,)
o if there is an oscillation, da< ().
o otherwise, 8g > 0 .
C. o set the slope = yN(a,,) where y = 0.7

when da{{ and y = 1.3 when 82> ()

(267)
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e if there is no oscillation with new slope,
then slightly increase the slope.

D. calculate describing function, which is equal to
the ultimate gain of unknown plant, from observed plant
output with the slope found in step C.

Finally, we consider a case that there is no
oscillation in the plant output with maximum slope of
actuator. The delay element can be used as shown in
Fig. 3. Insertion of delay element in the loop transfer
function implies that the magnitude of 1/G(jw) does
not change, but the phase is added by — jwd, for each

frequency where d, represent amount of delay.

Therefore  the appropriate d, that

ensures

(1/ GGw)) e ™ intersects [-s, 0]. It implies that the
closed loop system has an oscillation. Similar method
used finding the good slope can be applied to find the

appropriate " d". In fact, started with small value of

d), the value of &, is increased. Once we have

measurement of the amplitude of plant output and

period for G(jw)e "M‘, we can design the PID
controller for G(jw) to satisfy the design specification

such as phase margin or amplitude margin. For

example, suppose that the critical frequency w,= w,
and ultimate gain k.= k), which is determined from

describing  function  approximation with  saturation

function feedback, for G(jw)e e here d, is an
inserted time delay. Suppose that the desired phase

margin is ¢,,. The structure of PID controller is given

- _/_ exp({—sdt) G(S) N
; defay
saivration
Junction alement Plant

¥ 3. AAdeAvt e #HI2
Fig. 3. The closed-loop system with delay element.
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by GJAs)=k1+sTy+1/sT,) where k T, and
T'; are proportional gain, differential time, and integral

time, respectively, be determined

wi, d, ky,and ¢,

to using

Since the PID  parameters of
G, +) are to be chosen such that the following
equation is satisfied [1]
<G jw)+ £Glw)=— 1+ ¢, ®
using  ZG(jw)) — wyd,=—n, we can calculate
2G(jw) = $,,— wyd, from equation (9). Following

the design method of [1],

T = (tan(g,,— wid)) +V 4 a+ tan($,— w,dy)) | 2w,
Tiz Td/a/
0.25 .

where a typical value of ¢ = Since loop

transfer function with the PID controller has unit gain
at wy, | Gw)G(Gw) | = 1.

= [GGw)l = |1/ Glw)l = k

= k/ cos(d,,—wd) = k

= k= kcos(d,,~w d)

We can design simifarly for the amplitude margin

specification, and it can be shown

Ty = (tan(—w;d)+V 4 o+ tan*(— w1 d))) /2w,
T, = oy
k= (1/A ) kicos(— wid y)
(10
where A ,, is desired amplitude margin.
IV. Example
Consider the plant given by

G(s) = 1/(1+4s)e ~%. The Nyquist plot of G(s)

is shown in Fig. 4.

It intersects the real axis at (-0.26, 0) and w, =
0.93 . Hence we can calculate the ultimate gain k, =

3.84 and ultimate period 7, = 2x/w, = 6.75. For

(268)

Imaginary part of G{jw)

~0.4 —-0.2 o 0.6 0.8 1

0. C.4
Aesal part of Glw)
3% 4 Gs) = 1/(1+4s)e %) Nyquist 23
Fig4. The Nyquist plot of G(s) = 1/(1+4s)e ~%.

the purpose of comparison, we use the two nonlinear

the
ultimate gain and period. The second plot of Fig. 5 is

feedback elements, relay and saturation, to find

the plot of the plant output using relay nonlinear

plot of the oltput with siope=4.5 plot of the autput with retay
0.

output
o
ouiput

5 20 - 5 10 15 20
tima{aec)

a9 s geelet 25 ALEA 29
Fig. 5. The plot of plant output with relay and

6 18
tmetaec)

saturation nonlinear element.

element with an amplitude of relay=1. From Fig. 5, one
a = 0.4
the

can observe the amplitude of plant output,
T. ~ 6.5(sec).

equations (3) and (1), the ultimate gain can be found as

and ultimate period, Using

k. = 3.18. In the interest of simplicity to demonstrate
determining  the good slope of saturation nonlinearity,
we assume that actuator is an ideal one; there is no
limitation in the response curve of actuator. We start

testing of plant with relay feedback. Since a,, = 0.4
for the relay feedback case, N,(+) = 3.18, and we
chose the y = 1.4 . We set the new trail slope spew =

YN,(+) = 45 . The first plot of Fig. 5 is the
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output of the plant with the slope = 4.5 . The
amplitude of output is 0.3, one can observe that the
saturation nonlinearity reduces the high frequency
component of the plant output. Using the equations (1)
and (3), the ultimate gain k., = 3.7 for the saturation

nonlinear feedback case. The ultimate gain found with
saturation nonlinear feedback is much closer to real one
than that found with relay feedback. To discuss the
effect of one point information from relay feedback and
saturation function feedback in the controller design, we
consider the design of PID controller for amplitude
margin specification. Suppose that the desired amplitude
margin is given by 2. Using the equation (10) with
d;=0, one can find controller parameters,
k=1.85,T;=1.03, T;=4.13  for saturation

feedback case and k=1.59, T ,=1.03, T,=4.13 for

relay feedback. One can verify that the amplitude
margin is equal to 2.1 and 2.5 for saturation function
feedback and relay feedback case, respectively. This
results is expected since we already have seen that
saturation function feedback can identify the ultimate
gain more accurately than relay feedback.

IV. Conclusion

We propose the modified version of autotuning
method based on relay feedback. We use the saturation
nonlinear feedback element instead of relay feedback.
Our method improves the accuracy of describing
function approximation used to find ultimate gain by
reduction of high harmonics of plant output in the
expense of time, but not much of it. When a plant has
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a sharp Jow pass characteristics, high frequency
component of could be filtered out. Hence the
performance difference between relay feedback and
saturation feedback could be negligible. However plant
has not a sharp low pass characteristics, the proposed
algorithm gives better performance over relay feedback.
The proposed method can be used with other PID
controller tuning method based on relay feedback.
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