’89 KACC 1989. 10. 27~28

A General Dynamic Iterative Learning Control Scheme with
High-Gain Feedback
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A general dynamic iterative learning control scheme is proposed for a class of nonlinear

systems. Relying on stabilizing high-gain feedback loop, it is possible to show the existence

of Cauchy sequence of feedforward control input error with iteration numbers, which results

in a uniform convergence of system state trajectory to the desired one.

1 Introduction

Recently, iterative learning control schemes for a class of re-
peatable dynamic systems have been studied. Besides the
simplicity and straightforwardness, iterative learning control
does not require exact description of system dynamics so that
it can be applied to the various systems which are hard to
control under varying operation conditions. For example, it-
erative learning techniques are applied to robot motion con-
trol problems [3,5,6,7,8]. Amongst them Arimoto et.al. used
a general learning method to a robot manipulator in which
time derivative of system output error is used to modify the
control input torque for the next trial{2). To overcome diffi-
culties and constraints in the choice of control gain matrix in
Arimoto’s method, Oh et.al. adopted an parameter estimator

with iteration number(8].

On the other hand, high gain feedback concept was in-
troduced to establish desired tracking error bound for sys-
tem state trajectory [3,4,6,7]. As a torque generator Miller
et.al.[7] utilized CMAC memory [1] to learn approximate in-
verse moael of robot in appropriate regions of the state space.
T. Kuc and K. Nam also utilized a high-gain feedback con-
trol and a version of CMAC memory with a mapping rule
to reduce the memory size, and demonstrated convergence of
the systemn response to a desired one by computer simulation
results. The simulation results shows possibility of incorpo-
rating high gain feedback with learning control for a class of

repeatable nonlinear dynamic systems.

In this paper we study a possible learning control scheme
which is aided by high gain feedback to stabilize the uncer-
tain system state so that a learning(update) rule modifies
control input for the next iteration. A brief outline of the pa-

per is as follows. In section II we describe the target system

dynamics and problem formulation. Motivations are also ex-
plained for a possible approach to the problem solving. Then
the existence of a feedback law for local stabilization of the
target dynamic system is explained through a conceptual dis-
cussion of Liapunov transformation in section III. Moreover,
a constant high-gain feedback controller which stabilizes the
nonlinear system in the global sense is designed for the closed
feedback loop. Relying on the stablizing feedback law, we see
that it is possible to construct a dynamic iterative learning
control scheme for the target system in section IV. Conver-
gence analysis of the overall learning control scheme is given
in section V, which forms a uniform convergence rate with
respective to a certain kind of function norm. In Section
VI the overall structure of the proposed control scheme and
learning procedure is illustrated briefly. Section VII contains

concluding remarks.

2 System dynamics and problem for-

mulation

Consider a class of nonlinear dynamical systems described

by the following set of equations.
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z(t) € R*™, fi € R*, g1 € R™*™ Lipshitz continuous, and g;
positive or negative definite for all t € [0,14). That is,

IF('(0) - £ )] < sle’ () ~ ()]

Hor(2' (@) = 92NNl < ele' (@) ~2*@®)] 0<t<yy
where | - | denotes euclidean norm and a matrix norm is

defined as
I|A]l = inf{M : |Az| < M|z|for all z # 0}
for v € R, A € ™™™

Suppose that we are to solve the following.

Problem Statements: Let z; € W being a closed and
bounded subset of R’ and dist(dW,z,) > s > 0 for a pre-
specified state trajectory z4(t) of the system (1). For the
systemn dynamics (1), which may contain uncertainty of struc-
tural or parametric, we want to find a piece-wise continuous
control input Uy(t) for the dynamic system (1) to track the
desired state trajectory z4(t) within a given error bound of

(0 <e<s)foralltel0,ty]

In general, however, since the existence of an explicit solu-
tion is rarely the case in nonlinear control problems of track-
ing, evern. if the system dynamics are known exactly, it is
not easy to find a control Uy(t) explicitly for the target tra-
jectory z4(t). Moreover, there exists chances that a precise
description of system model is not known due to structural
uncertainties in system dynamics or parametric uncertain-
ties. Under such an ambiguous environments if we are to
control tightly the system trajectory to maintain a specified
error bound of tolerance all the control time, with one of
usual approaches commonly utilized as well as adaptive con-
trol method, it is not easy to achieve the goal without any dif-

ficulty at first hand. To counteract possible difficulties caused

by uncertain operating conditions and other constraints in
practical situation we are going to construct a dynamic it-
erative learning conirol method, which is one of simple and

straight forward strategies to shoot the problem.

By iterative learning we mean that via a learning scheme
and an update rule for a control input to the system (1)
the closed loop operation or open loop operation is repeated
iteratively with the same initial condition for the time interval
of [0,¢5]. Therefore, we are aiming at reducing the trajectory

errors progressively as iteration number j increases.

3 Existence of stabilizing state feedback

As one might suppose, in order to introduce an iterative
learning process to the system (1) a stable closed loop op-
eration should be guarenteed at the initial stage of learning.
Hence, our goal in this section is to design a constant linear

state feeback to stabilize target system (1).
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3.1 A local state feedback

When we consider only a local property of the nonlinear sys-
tem, it is worth while to discuss a conceptual existence of
simple feedback in local sense. That is, we pay a special
attention to the local properties of the nonlinear dynamic
system model (1). Linearizing system (1) around the desired
state trajectory z,4(t) at the j —th trial yields an error equa-
tion of linear time-varying system which is an approximation

of a perturbed system of (1).

583 (1) = A1) (1) + B(t)sU(t)

A(t) = [ :‘ :2 jl

2

where

Bay=|°
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A= 5 gyt 5 lran U
af on
Ay = '0—z;lzd(,)+55|m(f)Ud
sT(t) = zq(t) - 23(2)
SUI() = Ug(t) = U(t)

for t € [0,t5]-

Then, most of the local properties of the nonlinear system
(1) can be deduced from the linear system (2). In other
words, if the linear system (2) is asymtotically stable to the
desired trajectory with 6U3(t) = 0, then the nonlinear system
(1) is asymptotically stable to the same trajectory. If this is
not so for 6U7 (1) = 0, but a feedback control F6z7(t) can be
found to make the linear system (2) asymptotically stable for
any t € [0,14], then the same feedback control will make the
nonlinear system (1) asymptotically stable. Moreover, since
the system matrices A(t), B(t) are periodic with period T of

ts with respect to iteration such that

At +T)

A(t)

0<t<T

1l

B(t+T) B(1)

, there exists a linear time invariant system equivalent to the
periodic time-varying system (2) via Liapunov transforma-
tion which preserves stability characteristics. In order words,
considering the periodicity imposed by the iterative learning
process to the system (1) , we may find a linear feedback
law which stabilizes the system in local sense, if a Liapunov

transform is known for the controllable pair {A(t), B(2)}.

3.2 A global state feedback



Although we have discussed the existence of a local feedback
law via Liapunov transformation, it is not easy to construct
a Liapunov transform in practice. However, as a precise gen-
eralization of Gusev’s result [4], it is shown that a stable
closed-loop operation can be achieved by introducing a high-

gain concept to feedback loop.

Theorem 1:Suppose that the following conditions are satis-

fied for all ¢ € [0,24]
D) AGE®) - AERO) < mlal©) - 220+
rala}(t) - 23(2)]
i) 0< MI<gy <Ml

Then there exists a constant high-gain state feedback control
such that the initial tracking error of iterative learning scheme
is bounded with a given accuracy e > 0

o)~ zat) <e<s  te(o,t]

The state feedback and gain matrix are given by the following

equations and inequalities.

u=K& (3)
where
Z = z-z4
K = [1(,21(2]
nxn
Ki = —adb ™ lyn
Kz = —db ' Lixs
a > 0
b 2 Az
K1 b
d > (—+2(a+K3))— (4)
a )\1

Further, tracking error bound is conditioned by

d
V1 + 4a? <e<s

a(d— (5 +2(a + x,))%) -

(5)

where d = 194U4]-

The proof can be given in similar manner as in [4].

Remark: 1) Condition ) is always satisfied for the class of
Lipshitz continous function stated in section II.
2)By letting b = A, in (4), we get

d> (% +2(a+ K2))BR = (% +2(a+ x;))(% +1) (6)

where BR = Ay/A; and BW = A, — A denote input gain
bandratio and bandwidth. Therefore, the inequality (6) im-
plies that d is Jower bounded by BR, or equivalently BW.

3) In case that gy is negative definite the same argument as
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in theoreml) can be applied by multiplying negative sign to

the feedback gain matrices.

4 A general dynamic iterative learning

control scheme

Utilizing a high-gain feedback concept seems to be very at-
tractive as one of useful approaches to the given nonlinear
tracking problem. However, from (5) we see that it may not
be possible for the initial tracking error e to be driven to zero
with only high-gain state feedback. That is, in practical ap-
plication, we can not let the feedback gain d indefinitely large
due to the actuator saturation and noise vulnerability etc. |
so that initial tracking error bound given by (5) should be
traded off with gain limitation. This problem of trading off
in between setting feedback gain and specifying initial error
bound can be overcome by combining an iterative learning
process, which is another reason for why we prefer a simple
stragety of iterative learning control in nonlinear tracking
problem. At the initial stage of learning an appropriate gain
is chosen not to be too large, which may results in an ini-
tial error bound of e much greater than specified tolerance
€. Then learning process pull the state attractor to the inner
region of nominated error bound €. It is shown in the next
section that a dynamic iterative learning scheme works to
guarentee convergence to the target trajectory, even though

initial error exists due to finite feedback gain.

Now, we are in a position to outline a dynamic iterative
learning scheme. Recalling that our control objective is to
track a given desired state trajectory through an iterative
learning, we need to find an adjustable learning method for
the control input. As one of simple and feasible candidates
for the piece-wise continuous control input and update rule,

we set at the j — th trial for on-line learning control

Ulty= HI@t) + E(1), M
()= K[z/(t) — za(t)] (8)
H™ () = H(t)+ PE(1) (9)

, where z4(t),27(¢) for j = 1,2,... denote desired and actual
state trajectories and H7(t) is feedforward control input to
be adjusted, K € R™*?" is a high gain feedback matrix given
in (3) and U,H,E € R™ with a positive constanst g(< 1).
Further, as initial conditions we let z4(0) = 27(0) for all j
and H'(t) = 0 for all t € [0, T]. With respect to this kind of
control law for the system (1) we give a uniform convergence

analysis in next section.

Remark ) To get an insight to the control law given above
and delineate an intuitive reasoning for why we choose such

an update rule as the one in (9), define an index functional.

Ji= 3 3 W04t ~ H Q)P (10)
r=1



where U,4(t) is a desired control input to track z4(t) for t €
{0,T]. Applying gradient descent rule to the index(), we ob-
tain

a8y

" Y
) = O - By,

Hi(t) + p(Ua(t) - H (1)), (11)

where 3 is the training factor of constant. Hence if Uy is
known, learning can be proceeded with the above learning
rule (11). However, since precise system dynamics are not
known apriori we can not use (11) directly. Instead, we con-
sider the state error equation to replace (11) with a readily
available equation of known terms only. To be more specific,
considering linearized system (2) and substituting (7),(8) for
U7(t) and E¥(t) yields the following.

827 (t) + (B()K — A1)z (t) = B(t)(Ua(t) — H (1)) (12)

Hence Uy — HY may be considered as control input error

which should be removed for the state error to converge.

Recalling that we have shown that the existence of high-
gain feedback in theorem 1) and {A(t), B(t)} is a contro}l
lable pair , we can also find a sufficiently large Kny2n S0
that the linearized systern dynamics (12) can be also domi-
nated by the dynamics introduced via state feedback. That
is, time-varying terms {A;(t), A2(1)} may be suppressed by
feedback dynamics imposed on by {B(t) K, B(t)K,} respec-
tively, so that this closed loop operation induces a uniformly
asymptotic stability of autonomous part of the system (12)
for all t € [0, 7] and equaivalently gurantees a boundedness
of tracking error around the desired trajectory at initial stage
of training. Therefore, if we combine an update rule for feed-
forward control input H7(t) so that the error bias of control
input Ug(t) — H?(t) may be canceled, the overall closed loop
system can be made to converge asymtotically with iteration
number. Motivated by this observation and observing B(t)
nonsinglar, we replace the unknown input error Ua(t) — H(t)
in (11) by Kéz?(1) of the only term known and dominant in
the system dynamics (12), which leads to an update rule with

known terms only,

HY' (1) = HI(1) + BE (1) i=1,23,.. (13)

where 0 < 8 < 1,H'(t) = 0 for t € {0, 7). Roughly speaking,
this update rule can be considered as an approximation of un-
known control input errors by known high gain feedback error
terms. As a training factor of positive counstant, generaily §
is chosen smaller than unity due to sensitivity. However, in
case that system operation is smooth so that the difference in
derivatives of state trajectories with iteration number may be
sufficiently small , it is shown that 0 < A < 2 for the system

state error to reduce asymtotically in local sense (see (6]).
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5 Convergence of the learning control
scheme
In order to show the validity of this control scheme we define

a vector valued norm and matrix norm for the control time

period.

jvlm mazy<i<r|vl

{|A]lm mazoct<T]|All

where A = (a;j)nxn. v = (01,...,05) for m < n.

Then, the above learning control scheme is shown to be

convergent in the following statements.

Theorem 2: Consider a vector valued function norm

o)l = supigrcr{e™{o(t)]}

(14)

and assume that |Ug(t}],, < Uy for all £ € [0,T] and z4(0) =
z7(0) for all j = 1,2,.... Then, with the set of iterative learn-
ing control scheme (7),(8),(9) for the system (1) there exists
a cauchy sequence of control input error in the sense that for
positive constants u and p(0 < p < 1) the following inequality
holds

Ua(t) = HY' @) < plUa(t) - B @], 0t LT

(15)

Proof) Firstly, note that Ug(t) is bounded and since overall
closed loop system is stable along the desired trajectory, 627
is bounded so that H7 for all j = 1,2,... is bounded. Hence
U4 ~ H?| is bounded for all 5.

Substituting (7),(8) for U7 and E” in state error equation
(16), we have

z(t) - 2(t) = /:(h + gqUq)dr — ‘/“f(ff + ¢ U dr
= Lt((fd—fj)+(gd—gj)Ud—gJI((’-'d(T)*Ij(r)))dT

t .
+ [ PWitr) - B (yar (16)
where
fa = fza(7))
F = 1))
Multiplying both sides of (16) by e~

a0 - F0) = [ G )+ = o)

)

Ui — @ K(za(r)—(r))}dr

. )
N / e M=) gI =T (U () — HI(1))d2(17)
(i

This yields the following inequality

lealt) - 27 (1)], < ngnml—‘—ﬂ'ﬂud(t%ma)lu



13 .
+ [ emtn) (5m + Ul + 19K ) 2a(7) = (7
0
(18)
Applying Belmann-Gronwall’s lemma it becomes

|za(®) — 27 (B)u < polUalt) — HY(t)], (19)

, where

L 1—e
po = ———llgllmezp(——(xm + am|Udlm + |lg K |Im))
(20
Note that boundedness of right hand side of the inequalities
(18) is guarrented by the stability along the desired trajec-
tory.

On the other hand, from (1),(7),(8),(9)
ga(t) = (1) = fo— f+gaUs(t) — ¢UI(®)
= (fa= 1)+ gaUa(t) — ¢ (H7(0) + E° (1))
= (= )+ 9aUa(t) - ¢ (HUPD(@) + (1= H)E'(2))
= (fa— f) = (1= B)g K(zalt) - (1))

+ @ (Ua(t) — HID () + (94 — 9°)Va (21)

It becomes
Ua(t) — PP (1) = g*(24(t) — £ (1) - ¢*((fu— f7)
+ (94 — ¢)Us) +(1 = B)K (zalt) - 2°(8)) (22)

where g# denotes a generalized inverse which always exists,
for g is full rank for all ¢ € [0,77].

Since f is bounded and control input U is a piecewise
continuous function of z, from the closed loop system for (1)

we may possibly assume the following:

l#4(t) = ()] < C(D)za(t) - £ (1)] (23)

With this inequality multiplying both sides of (22) by e

and taking function norm leads to the inequality

Ua(t) = HI*' (@], < wolea(t) = 27 (D), (24)
where
wo = [1g¥llm(km + Gm + am|Uslm) + (11 = BDIIK[}m
(m = mazycc,((t)

Combining this with (19) yields
[Ua(t) = B (8)],, < p|Ua(t) ~ HI(2)], (25)

where p = pywy. Note that since wy is finite , we can choose a

sufficiently large u in py to yield 0 < p < 1. Hence, applying
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inductive relation to (25) yields the desired results.

[Ua(t) = H* ()], < P IUs() — H' ()],

P U]
U

IA

(26)

Therefore, we conclude that |Uy — H?|, — 0 uniformly as

j — oo for all t € [0,T]. This completes the proof.

In addition to theorem 2} we have the following corollarys

as a natural reasoning of the theorem.

Corollary 1) With assumptions in theoreml) the system
state converges uniformly, that is, |z4(t) — z7(t)|, — 0 uni-

formly as j — oo for all t € [0,7].

Corollary 2) For the system (1) with the learning control
scheme (7),(8),(9) there exists a cauchy sequence of feedfor-

ward control input {H7(t)} with respect to iteration axis.

Proof of Cor.1),2) Cor.1) is obvious from the inequality
(19) and the result of theoremn2). That is, since the error bias
input of closed loop system converges uniformly asymtotically
as j - 0o, the overall closed loop operation is also uniformly
asymtotically stable. Alternatively, Cor.1) can be proved in
a similar maner as in theorem2). Cor.2) results from the
update rule (9) and Cor.1). That is, |H7+(t) — HI(t)],, — 0
uniformly as j — oo for all ¢ € [0, T7].

Remark) The most essential feature of the control scheme is
that a precise description of system dynamics is not necessary
,which results in flexibility and adaptability of controller un-
der varying operation conditions. What we should concern in
application is only to bound the system states within a posi-
tively invariant stable regions by taking full advantage of high
gain feedback from which feedforward controller pulls the at-
tractor to the equilibrium state via control input error bias
reduction. This feature can be compared with other types of
general learning schemes : most of general learning rules do
not involve any system dynamics at all, or even if they do,
not exlpicitly. On the contrary, the above update rule (9)
contains dominant system dynamics via high gain feedback.
This is why we call the control method a dynamic iterative

learning control.

6 Synthesis of dynamic iterative learn-

ing control scheme

The overall control scheme can be organized as in Fig.1. It
consists of four main blocks. That is, a system state trajec-
tory planner, high gain feedback controller, an update rule,
feedforward controller. This is a kind of hybrid type con-
troller in which high gain feedback controller stabilizes the
uncertain dynamics and feedforward control input sequence

generator reduces the system state error progressively with



iteration number. After perfect training, the feedforward con-
troller would learn an inverse dynamics of the plant and then
play a major role in tracking control, while the feedback con-
troller takes the main role at the initial stage of learning
where a large tracking error may exist. Note that the overall
learning control scheme is self-organized via stable closed loop
operation to complete the control objectives. That is, it needs
no external input, as it does in other learning methods{2,3 8],
to perturb the states of plant for learning adaptation except
a command state trajectory. This feature adds robustness to
the controller by avoiding an initial perturbation input which
may collapse the stable operation of the learning controlier.
In addition, we mention that the feedforward controller can
be equiped with one of neural network architectures as long
as its convergence property is suitable for real time control.
In this application, we utilized a version of CMAC in[6]. Also
note that to prevent memory size from increasing indefinitely
with control time duration or sampling frequency , we may
adopt the same kind of mapping rule as in[6] defined for the
memory cells to store and update feedforward control input
sequence as distributed data. We summerize the iterative

learning procedure briefly in the following.

Step 1. Determine z4(t) a desired state trajectory and

€,¢(< s) initial and final tracking error bound.

Step 2. For a given initial error tolerance e, design high-gain
feedback and feedforward learning block structure.

Step 3. Set j = 0.

Step 4. Set j = j+ 1.

Step 5. Start the learning process.

Step 6. If

|Zj"1‘dlm <ce¢

,then stop.
Else go to Stepd.

Xy Feadforward
7| Controlier
Trajectory i
Pianner ®g Learmning

Rule

Xg Feadback

+ Controller System
x}

Fig.1 Learning Controller with High-Gain Feedback

7 conclusion
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We proposed a general dynamic iterative learning control
method with high-gain feedback loop for a class of repeatable
nonlinear systems. In the control scheme the most dominant
closed loop system dynamics is fully taken into account via
feedforward input learning procedure. Moreover, since any
external input is not necessary at the initial stage of learn-
ing, robustness characteristic might be enhanced in compar-
ison to the other type of general learning methods. This
self-organizing ptoperty and role transition property mark
two main features of the hybrid type learning controller. Al-
though we focused on the given nonlinear system class (1)
,this learning control scheme can also be adapted effectively
for a class of repeatable or periodic uncertain linear systems
as long as they are controllable. More emphases for further
study should be laid on the effect of disturbances to the per-
formance of the learning scheme and extension of the target
class of nonlinear systems for learning control to a more gen-

eral class.
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