• Title/Summary/Keyword: high transmittance

Search Result 913, Processing Time 0.029 seconds

Surface Plasmon Resonance Effect of Ag Layer Inserted in a Highly Flexible Transparent IZTO/Ag/IZTO Multilayer Electrode for Flexible Organic Light Emitting Diodes

  • Park, Ho-Kyun;Jun, Nam-Ho;Choi, Kwang-Hyuk;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.601-604
    • /
    • 2008
  • We report on the Ag thickness effect on the electrical and optical properties of indium zinc tin oxide (IZTO)-Ag-IZTO multilayer electrode grown on a PET substrate and the surface plasmon effect of Ag layer on the optical properties of IZTO-Ag-IZTO electrode. Using an IZTO-Ag-IZTO multilayer with a total thickness below ~80 nm, we can obtain high-quality flexible electrode with very low sheet resistance, high transmittance, high work function and superior flexibility.

  • PDF

Effect of Oxygen Flux on FTO Thin Films Using DC and RF Sputtering

  • Park, Eun Mi;Lee, Dong Hoon;Suh, Moon Suhk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • Transparent conductive oxides (TCOs) are essential material in optoelectronics such as solar cells, touch screens and light emitting diodes. Particularly TCOs are attractive material for infrared cut off film due to their high transparency in the visible wavelength range and high infrared reflectivity. Among the TCO, Indium tin oxide has been widely used because of the high electrical conductivity and transparency in the visible wavelength region. But ITO has several limitations; expensive and low environmental stability. On the other hands, fluorine doped tin oxide (FTO) is well known for low cost, weather ability and stable in acidic and hydrogen. In this study, two different magnetron sputtering techniques with RF and DC modes at room temperature deposition of FTO thin film was conducted. The change of oxygen content is influence on the topography, transmittance and refractive index.

Efficiency of Photovoltaic Cell with Random Textured Anti Glare (RTAG) Glass

  • Kim, Geon Ho;Jeon, Bup Ju
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.133-137
    • /
    • 2016
  • The surface treatment of cover glass for conversion efficiency of photovoltaic cell is important to reduce reflectivity and to increase the incident light. In this work, random textured anti glare (RTAG) glass was prepared by wet surface coating method. Optical properties due to the changes of surface morphology of RTAG glass were compared and conversion efficiency of photovoltaic cell was researched. Grain size and changes of surface morphologies formed with surface etching time greatly affected optical transmittance and transmission haze. Current density (Jsc) were high at the condition when surface morphologies reflection haze were low and transmission haze were high. Jsc was $40.0mA/cm^2$ at glancing angle of $90^{\circ}$. Incidence light source was strongly influenced by surface treatment of cover glass at high incidence angle but was hardly affected light source at the low angle of incidence.

An Evaluation for the Quantitative Thermal Performance of High Energy Efficiency Low-e Window (고효율 로이유리 창호의 정량적 단열성능 평가)

  • Choi, Gyoung-Seok;Choi, Hyoun-Joung;Kang, Jae-Sik;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.970-975
    • /
    • 2006
  • In the high oil prices age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating large percentage whole building loads, and are regarding as the primary target of energy efficiency. The purpose of this study is to draw up a technical counterplan for the intensification of windows energy efficiency and spread promotion by quantitative thermal performance with KS test method for a comparison between the general Pair glass windows and the Low-e pair glass windows.

  • PDF

Electrical and optical properties of ITO films annealed at high humidity (고습에서 열처리된 ITO 박막의 전기적 및 광학적 특성)

  • Ma, Tae Young;Park, Ki Cheol
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • The ~185 nm thick ITO films deposited by high frequency magnetron sputtering were annealed at 100% humidity. Annealing was performed at 200℃, 250℃, 300℃, 350℃, 400℃ and 450℃ for 4 hours, respectively. Variations in resistivity, electron concentration, and mobility by high-humidity annealing were investigated. The stress change was estimated from the XRD results, and the surface morphology of films was observed through the FESEM micrographs. After measuring the light transmittance, the energy-band-gap was obtained and analyzed with the Burnstein-Moss effect.

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF

Micropropagation of Sweetpotato (Ipomoea batatas) in a novel $CO_2$-Enriched Vessel

  • Silva Jaime A. Teixeira da;Giang Dam Thi Thanh;Tanaka Michio
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 2005
  • To overcome various disadvantages of conventional cul-ture vessels for micropropagation, a novel disposable vessel, the 'Vitron', made of a multi-layered $OTP^{(R)}$ film and supported by a polypropylene frame, was developed. The film possesses superior properties such as: high light transmittance, low water vapor transmittance and thermal stability and in particular, high gas-permeability. Single nodal explants, which were excised from the multiple shoots derived from shoot-tip culture, were cultured in Vitron and polycarbonate vessels on $3\%$ sugar-containing agar on MS medium and placed at 3000 ppm $CO_2$-enrichment at a low photosynthetic photon flux density (PPFD) ($45{\mu}mol\;m^{-2}\;s^{-1}$). The in vitro and ex vitro growth, and the net photosynthetic rate of in vitro and ex vitro plantlets were significantly enhanced in the Vitron compared to those cultured in a polycarbonate vessel. Explants that were cultured on the same MS medium under low PPFD at various $CO_2$ concentrations were also cultured at 3000 ppm $CO_2$- enrichment at various PPFD: 30, 45, 60, 75 and $90{\mu}mol\;m^{-2}\;s^{-1}$. The best in vitro and ex vitro growth obtained for 3000 ppm $CO_2$-enrichment at $75{\mu}mol\;m^{-2}\;s^{-1}$ PPFD. The novel Vitron vessel, when placed under the two conditions, may replace conventional culture vessels for the successful micropropagation of sweetpotato.

Study on the Ophthalmic Lens Materials with High Refractive Index Containing Vinylanisole (Vinylanisole을 포함한 고굴절률 안의료용 렌즈 재료에 관한 연구)

  • Kim, Tae-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.755-760
    • /
    • 2010
  • This study used 3-vinylanisole and 4-vinylanisole with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), NVP (N-vinyl-2-pyrrolidone) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Measurement of the physical characteristics of the copolymerized material showed that the refractive index is 1.4496 - 1.4894, water content 22.93 - 35.50%, visible transmittance 88.8 - 90.8%. Also, measurements showed that the refractive index increased while the water content decreased as the ratio of 3-vinylanisole and 4-vinylanisole increased. And in cases of copolymer with 3-vinylanisole, 4-vinylanisole (added 15%) the results showed transmittance of 52.8 - 82.2%, 13.2 - 26.2% respectively for UV-A and UV-B showing that they have UV-blocking effects. Based on the results of this study, the produced copolymer can be estimated to be suitable for use as ophthalmic lens material for high refractive index and UV- blocking effects.

Characterization of Hydrogen Gas Sensitivity of ZnO Thin Films (고감도 ZnO 박막센서의 수소가스 검출 특성 연구)

  • Kong, Young-Min;Lee, Hak-Min;Huh, Sung-Bo;Kim, Sun-Kwang;You, Yong-Zoo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.636-639
    • /
    • 2010
  • ZnO thin films were prepared on a glass substrate by radio frequency (RF) magnetron sputtering without intentional substrate heating and then surfaces of the ZnO films were irradiated with intense electrons in vacuum condition to investigate the effect of electron bombardment on crystallization, surface roughness, morphology and hydrogen gas sensitivity. In XRD pattern, as deposited ZnO films show a higher ZnO (002) peak intensity. However, the peak intensity for ZnO (002) is decreased with increase of electron bombarding energy. Atomic force microscope images show that surface morphology is also dependent on electron bombarding energy. The surface roughness increases due to intense electron bombardment as high as 2.7 nm. The observed optical transmittance means that the films irradiated with intense electron beams at 900 eV show lower transmittance than the others due to their rough surfaces. In addition, ZnO films irradiated by the electron beam at 900 eV show higher hydrogen gas sensitivity than the films that were electron beam irradiated at 450 eV. From XRD pattern and atomic force microscope observations, it is supposed that intense electron bombardment promotes a rough surface due to the intense bombardments and increased gas sensitivity of ZnO films for hydrogen gas. These results suggest that ZnO films irradiated with intense electron beams are promising for practical high performance hydrogen gas sensors.