Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.2.41

Effect of Oxygen Flux on FTO Thin Films Using DC and RF Sputtering  

Park, Eun Mi (Korea Electronics Technology Institute)
Lee, Dong Hoon (Korea Electronics Technology Institute)
Suh, Moon Suhk (Korea Electronics Technology Institute)
Publication Information
Applied Science and Convergence Technology / v.24, no.2, 2015 , pp. 41-46 More about this Journal
Abstract
Transparent conductive oxides (TCOs) are essential material in optoelectronics such as solar cells, touch screens and light emitting diodes. Particularly TCOs are attractive material for infrared cut off film due to their high transparency in the visible wavelength range and high infrared reflectivity. Among the TCO, Indium tin oxide has been widely used because of the high electrical conductivity and transparency in the visible wavelength region. But ITO has several limitations; expensive and low environmental stability. On the other hands, fluorine doped tin oxide (FTO) is well known for low cost, weather ability and stable in acidic and hydrogen. In this study, two different magnetron sputtering techniques with RF and DC modes at room temperature deposition of FTO thin film was conducted. The change of oxygen content is influence on the topography, transmittance and refractive index.
Keywords
FTO; sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Okuhara, T. Kato, H. Matsubara, N. Isu, M. Takata, Thin solid films, 519, 2280 (2011).   DOI   ScienceOn
2 E. Fortunato, D. Ginley, H. Hosono, D. C. Paine, MRS Bull, 32, 242 (2007).   DOI
3 W. F. Wu, W. S. Chiou, Thin solid films, 298, 221 (1998).
4 H. Kim, R.C.Y. Auyeung, A. Pique, Thin solid films, 516, 5052 (2008).   DOI   ScienceOn
5 B. Zhang, Y. Tian, J. Zhang, W. Cai, Optoelectronics and advanced materials-rapid communications, 4, 1158 (2011).
6 Z. M. Jarzebski, J. P. Marton, J. Electrochem. Soc, 123, 199C, (1976).   DOI
7 K. S. Ramaih, V. S. Raja, Appl. Sur. Sci., 253, 1451 (2006).   DOI   ScienceOn
8 B. H. Liao, C. C. Kuo, P. J. Chen, C. C. Lee, Appl. Opt., 50, C160 (2011).
9 J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, Phys. Rev. B, 68, 155410 (2003).   DOI   ScienceOn
10 H.C. Lee, J.Y. Seo, Y.W. Choi, D.W. Lee, Vacuum, 72, 269 (2004).
11 M. Quaas, H. Steffen, R. Hippler, H. Wulff, Surf. Sci., 540, 337 (2003).   DOI   ScienceOn
12 P. F. Carcia, R. S. McLean, M. H. Reilly, Z. G. Li, L. J. Pillione, R. F. Messier, Appl. Phys. Lett. 81, 1800 (2002).   DOI   ScienceOn
13 J. C. Hsu, U. S. Chiang, ISRN Materials science, 2013, 710798 (2013).
14 S. H. Huang, P.H. Cheng, Y. Y. Chen, Chin. Phys. B, 22, 027701 (2013).   DOI   ScienceOn
15 Y. C. Liang, Appl. Phys A, 97, 249 (2009).
16 H. N. Cui, V. Teixeira, L. J. Meng, R. Martins, E. Fortunato, Vacuum, 82, 1507 (2008).   DOI   ScienceOn
17 H. N. Cui, V. Teixeira, A. Monteiro, Vacuum, 67, 589 (2002).   DOI   ScienceOn
18 Q. H. Li, D. Zhu, W. Liu, Y. Liu, X. C. Ma, Appl. Surf. Sci., 254, 2922 (2008).   DOI   ScienceOn