• Title/Summary/Keyword: high torque

Search Result 1,679, Processing Time 0.034 seconds

Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters (고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구)

  • Lee, Hyeon Ju;Nah, Hwan Seon;Kim, Kang Seok;Kim, Jin Ho;Kim, Jin Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Because the torque control method, which is also caled the clamping method in domestic construction sites, is affected by a variation of the torque coefficient, quality control of the torque coefficient is essential. This study was focused to evaluate the effects of several environmental factors and errors when installing bolts while tightening high-strength bolts. Conditioning environmental parameters include wet, rusty and exposure-to-air-only conditions. In addition, because of errors in workability such as instalation of two washers, upset washers are selected. During the tests, torque, torque coefficient, tension and angle of nut rotation were obtained using a bolt testing machine. Test specimens of four types of bolts (High-Strength Hexagon bolt on KS B 1010, Torque Shear Bolt on KS B 2819, High-Strength Hexagon bolt coated with zinc, and ASTM 490 bolt) were recomended. Based on test results, the tightening characteristics subjected to environmental parameters were investigated and compared with the results in normal condition.

A New Direct Torque Control Method of Induction Motor for Torque Ripple Reduction

  • Kim, Deok-Ki;Kim, Jong-Su;Kim, Sung-Hwan;Kim, Hyun-Soo;Kim, Won-Ouk;Yoon, Kyoung-Kuk;Oh, Sae-Gin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1061-1067
    • /
    • 2008
  • Direct Torque Control[DTC] and Vector Control are the two schemes developed for high performance induction motor drives. DTC based induction motors are being increasingly used in various industrial applications. DTC offers fast torque response and better speed control with lesser hardware and processing costs as compared to vector controlled drives. However, conventional DTC suffers from high torque ripple, current harmonics and low performance during torque transients. In this paper a new Direct Torque Control[DTC] method of induction motor is presented. In comparison with the conventional DTC method, the PWM technique is applied to proposed control method. In this method, decoupling mechanism is not required and the torque, the flux magnitude are under control using PI controllers and generating the voltage command for inverter control. Therefore torque and speed ripple could be reduced in comparison with the conventional switching table DTC.

New Instantaneous Torque Estimation and Control for PM Synchronous Motor (영구자석 동기전동기의 새로운 순시토오크 추정 및 제어)

  • 정세교;김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • A new instantaneous torque control is presented for a high performance control of a permanent magnet(PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low speed region, new torque estimation and cotrol techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique and the torque is instantaneously controlled by the proposed torque controller combining an integral variable structure control with a space vector PWM. The proposed control provides the advantage of reducing the torque pulsation caused by the non-sinusoidal flux distribution. This control strategy is applied to the high torque PM synchronous motor drive system for direct drive applications and implemented by using a software of the DSP TMS320C30. The simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of proposed control.

A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts (토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.68-76
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance control system of Reluctance Synchronous Motor (RSM) drives for an industrial servo system with direct torque control (DTC). The problems of DTC for high-dynamic performance and maximum efficiency RSM drives are the nonlinear variable flux and inductance due to a saturated stator linkage flux and nonlinear inductance curve with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by using the adapted neural network from measuring the modulus and angle of the stator current. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, we have some actual experimental system using 6000 pulse/rev encoder at ${\pm}10$ and ${\pm}1500rpm$. The developed digitally high-performance control system are shown some good response characteristics of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

Design and Analysis of a Material Efficient Sinusoidal Consequent-Pole High-Speed Axial-Flux Machine

  • Kumar, Sunil;Kwon, Byung-il
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.759-766
    • /
    • 2018
  • This paper presents a high-speed axial-flux machine which utilizes the idea of sinusoidal shaped pole combined with a consequent iron-pole. The target of the proposed machine is the cost reduction of the relatively expensive Samarium-Cobalt (SmCo) permanent magnet (PM) material and the torque per PM volume improvement by using sinusoidal consequent-pole rotor. The effectiveness of the proposed machine is validated by comparing it with conventional consequent-pole and with conventional PM machines using 3-D finite element method (FEM) simulations. The comparison and analysis is done in terms of back electro-motive force (back-EMF) harmonic contents, torque per PM volume and torque ripple characteristics. The simulation results show that the proposed machine is suitable and cost-effective for high-speed and high torque per PM volume applications. Furthermore, due to the consequent pole, the magnetic flux saturation and the overload current torque-capability are also presented and discussed in the paper.

Comparison of the torque stability of Implant Torque Controllers

  • Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Korean Dental Science
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • Tightening of the screws in implant restorations should be accurate and precise. If applied torque is too low, screw loosening would be occurred. With too high torque, the screw fracture might take place. Various torque generating devices are developed and employed to apply a proper torque. The purpose of this investigation was to determine and compare the accuracy of the torque controllers. In this study, 4 types of torque controllers were used; electronic torque controller, torque limiting device, torque indicating device and contra angle torque driver. Digital torque gauge was employed to measure the de-torque value. Thirty cycles of tightening and loosening were done with each torque controller. All implant torque controllers have shown slight errors and deviations. The torque liming device exhibited the most accurate data. No significant difference was found among the mean de-torque values of the electronic torque controller, torque indicating device and contra angle torque driver. In the limitation of this study, it would be recommended that the implant torque controllers should be checked whether uniformed and precise torque can be generated and a measuring error should be corrected.

  • PDF

A Study on the Sensorless Speed Control of Induction Motor by New Direct Torque Control (새로운 직접토크제어에 의한 유도전동기의 센서리스 속도제어)

  • Kim, Jong-Su;Seo, Dong-Hoan;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1105-1110
    • /
    • 2011
  • This paper presents an improved direct torque control based on artificial neural networks technique. The major problem that is usually associated with DTC drive is the high torque(speed) ripple. To overcome this problem a torque hysteresis band with variable amplitude is proposed based on artificial neural networks. The artificial neural networks proposed controller is shown to be able to reducing the torque(speed) ripple and dependency on motor parameter and to improve performance DTC especially at high speed and reversal running.

Pure Torque Reaction System for Wind Tubine Gearbox (순수 토크 전달을 위한 풍력발전기용 증속기 반력지지 장치)

  • Lee, Jung-Hun;Park, Hyun-Yong;Shin, Young-Ho;Park, Jong-Po;Park, Jung-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.471-474
    • /
    • 2009
  • Gearbox is used to converter the power with high torque and low speed into the power with low torque and high speed. Gearbox housing should be sustained to prevent rotation of gearbox itself due to the difference between input and out torque. Uneven wind causes the reaction system to have unwanted reactive loads together with predictable pure torque. These unwanted reaction loads often cause the failure of gearbox due to bad gear mesh. In this paper, pure torque reaction system is proposed to prevent the failure of gearbox. Effectiveness and functionality of the proposed reaction system are demonstrated through the numerical analysis.

  • PDF

Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments (실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.