• Title/Summary/Keyword: high tension bolts

Search Result 60, Processing Time 0.02 seconds

Slip Coefficients between Steel Plates Fixed with High Tension Bolts (고장력볼트로 체결되는 철판 사이의 미끄럼계수)

  • Kim, Choong-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.338-342
    • /
    • 2008
  • Tensile test results using three kinds of steel structure specimens are measured and compared. Slip coefficient between shot blasted steel plates was greater than 0.6. For the case of the plates coated with Super zinc, it revealed that the coefficients were greater than 0.5. On the other hand, Super epoxy coating decreased its slip coefficient less than 0.25. Steel plates coated with Super zinc are proved to be practically applicable to the steel structures with anti-corrosion characteristics and clean surfaces.

Partially restrained beam-column weak-axis moment connections of low-rise steel structures

  • Lim, Woo-Young;Lee, Dongkeun;You, Young-Chan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.663-674
    • /
    • 2020
  • In this study, partially restrained beam-column moment joints in the weak-axis direction were examined using three large-scale specimens subject to cyclic loading in order to assess the seismic resistance of the joints of low-rise steel structures and to propose joint details based on the test results. The influence of different number of bolts on the moment joints was thoroughly investigated. It was found that the flexural capacity of the joints in the direction of weak axis was highly dependent on the number of high-tension bolts. In addition, even though the flexural connections subjected to cyclic loading was perfectly designed in accordance with current design codes, severe failure mode such as block shear failure could occur at beam flange. Therefore, to prevent excessive deformation at bolt holes under cyclic loading conditions, the holes in beam flange need to have larger bearing capacity than the required tensile force. In particular, if the thickness of the connecting plate is larger than that of the beam flange, the bearing capacity of the flange should be checked for structural safety.

An Analytical Study for the Strength of the High Tension Bolted Joints in Plate Girder (Plate Girder 볼트 이음부 강도에 관한 해석적 연구)

  • Ham, Jun-Su;Hwang, Won-Sup;Yang, Sung-Don;Chung, Jee-Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.469-478
    • /
    • 2012
  • In this study, structural behavior of high tension bolted connections was analyzed in order to investigate effective utilizations. Also, the simplified numerical analysis method showing bolt behavior was proposed using the connector element in the ABAQUS, a nonlinear finite element program and verified by numerical analyses on the basis of the experiment of previous study. In an effort to analyze strength properties of plate girder which high tension bolts are applied to, the effects of each design parameter were compared and analyzed after moment-displacement relations were investigated according to design parameters (upper flange, lower flange, upper and lower flange, web) by action force standards.

Evaluation of slip coefficient of slip critical joints with high strength bolts

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Kim, Kang-Seok;Kim, Woo-Bum
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.477-488
    • /
    • 2009
  • A slip critical joint has various values to adopt the proper slip coefficient in various conditions of faying surfaces in the following codes: AISC, AIJ and Eurocode 3. However, the Korean Building Code still regulates the unique slip coefficient, 0.45, regardless of the diverse faying conditions. In this study, the slip resistance test, including five kinds of surface treatments were conducted to obtain the proper slip coefficients available to steel plate KS SM490A. The faying surfaces were comprised of a clean mill, rust, red lead paint, zinc primer, and shot blast treatment. The candidates for high strength bolts were torque-shear bolts, torque-shear bolts with zinc coating, and ASTM A490 bolts. Based on the test results, the specimens with a shot blasted surface and rusted surface exhibited $k_s$, 0.61, and 0.5, respectively. It is recommended that the specimens with zinc primer exhibit $k_s{\geq}0.40$. The clean mill treated surface had prominently lower values, 0.27. For red lead painted treatment, the thickness of the coating affects the determinant of slip coefficient, so it is necessary to establish a minimum $k_s$ of 0.2, with a coating thickness of 65 ${\mu}m$. During 1,000 hours of relaxation, the uncoated surfaces exhibited the loss of clamping force behind 3%, while the coated surfaces within a certain limited thickness exhibited the loss of clamping within a range of 4.71% and 8.37%.

Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments (실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.

A Study on Behavioral Characteristics of Inner Reinforced CFT Column-to-Foundation Connections (내부보강형 CFT 기둥 기초 연결부의 거동특성에 대한 연구)

  • Kim, Hee-Ju;Ham, Jun-Su;Chung, Jin-Il;Hwang, Won-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.36-43
    • /
    • 2014
  • In this study, circular sectional concrete-filled tube(CFT) column-to-foundation connections were numerically investigated in order to improve their structural details. A inner reinforced specimen with high-tension bolts and inner deformed bars was adopted from a previous experimental study to make the numerical model. The validity of the numerical method was verified through comparing the experimental results with the analysis's ones. In order to optimize design variables about the inner reinforced model, a number of numerical analyses were conducted for various variables. Finally, this study suggested the optimum variables about the reinforced circular sectional CFT column-to-foundation connections.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF

Experimental Study of the End-plate Gap Effect on the Performance of Extended End-plate Type Splice (이음면 이격이 확장형 단부판 이음부 성능에 미치는 영향에 대한 실험적 연구)

  • Kim, Cheol Hwan;Lee, Myung Jae;Kim, Hee Dong;Kim, Sa Bin
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.427-438
    • /
    • 2016
  • This study is experimental research for the effect of gap at the end plate on the performance of extended end-plate type splice. For this research, simple beam type specimens by using extended end-plate type splice are planned. Main variables are the initial gap between end-plates, the installation of finger shim plate before the installation of high tension bolts, the final gap between end-plates, and the installation of finger shim plate after the installation of high tension bolts. The static loading tests results show that the maximum bending strength of splice is not dependent on the gap, but the vertical displacement, initial stiffness and elastic stiffness are affected by the gap. In addition to that, the possibility of brittle fracture is increased when the torque of high tension bolt is used to control the gap. Thus, careful consideration is needed in this case.

Estimation of the Axial Stress in High-Tension Bolt by Acoustoelastic Method (음탄성법을 이용한 고장력 볼트의 축응력 평가)

  • Chun, Hae-Hwa;Lee, Tae-Hoon;Jhang, Kyung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.285-290
    • /
    • 2006
  • The evaluation of clamping condition has been regarded as the main issue in the safety-maintenance of the clamped high-tension bolts. For this, this paper proposes a method to estimate the axial stress by measuring the TOF (Time-Of-Flight) of ultrasonic wave, which is based on the acoustoelasticity or the dependency of sound speed on the stress. In this method, however, the variation of sound speed within the range of stress induced under the field condition is very small, and thus the accuracy of the TOF measurement is important. We adopted the phase detection method using tone-burst ultrasonic wave to measure the precise TOF. In order to verify the usefulness of the proposed method experiments are carried out and the results were compared with the stress measured by the strain gage. The results show good agreement with each other, and from these we can conclude that the proposed method is highly useful fnr the evaluation of clamping condition in the clamped high-tension bolts.

Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters (고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구)

  • Lee, Hyeon Ju;Nah, Hwan Seon;Kim, Kang Seok;Kim, Jin Ho;Kim, Jin Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Because the torque control method, which is also caled the clamping method in domestic construction sites, is affected by a variation of the torque coefficient, quality control of the torque coefficient is essential. This study was focused to evaluate the effects of several environmental factors and errors when installing bolts while tightening high-strength bolts. Conditioning environmental parameters include wet, rusty and exposure-to-air-only conditions. In addition, because of errors in workability such as instalation of two washers, upset washers are selected. During the tests, torque, torque coefficient, tension and angle of nut rotation were obtained using a bolt testing machine. Test specimens of four types of bolts (High-Strength Hexagon bolt on KS B 1010, Torque Shear Bolt on KS B 2819, High-Strength Hexagon bolt coated with zinc, and ASTM 490 bolt) were recomended. Based on test results, the tightening characteristics subjected to environmental parameters were investigated and compared with the results in normal condition.