• Title/Summary/Keyword: high tensile steel

Search Result 1,069, Processing Time 0.031 seconds

The Influence of [Mn/S] Ratios on the Fracture Morphology of a Heavy-section Steel Castings at Elevated Temperature (대형주강의 고온파단형태에 미치는 [Mn/S]비의 영향)

  • Kim, Sung-Gyoo;Kim, Ji-Tae;Park, Bong-Gyu;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.170-178
    • /
    • 2014
  • Using the Gleeble test, the effects of [Mn/S] ratios and the presence of sulfides on the high-temperature fracture morphology of heavy-section steel castings were analysed via the observations of the microstructures. The specimens for which the [Mn/S] ratio was in the range of 60~80 showed a ductile fracture morphology with an area reduction of more than 60%, while some specimens with similar [Mn/S] ratios showed a brittle fracture morphology with an area reduction of 0.0% due to the liquidation of sulfides at the grain boundary. The fracture morphology was classified into three types in the Gleeble high-temperature tensile test specimens. The first type showed dimple formation at the grain boundary, the formation of globular MnS sulfides, and plastic deformation of sulfides at an elevated temperature, indicating a needle-point type of ductile fracture with area reductions of 96.0~97.8%. The second type was a knife-edge type brittle fracture with an area reduction of 0.0% due to the film-type liquidation of sulfides at the grain boundary, band-type liquidation, and the liquidation of a terraced nipple pattern. The third type was the typical ductile fracture with an area reduction of 31.3~81.0%, in accordance with the mixture of dimples with in the grains and terraced nipple pattern at the grain boundary.

Performance of High-Flowable Retaining Wall Material Using Ground Granulated Blast-Furnace Slag and Steel Fiber (고로슬래그미분말 및 강섬유를 적용한 고유동 흙막이 벽체 재료의 성능 평가)

  • Kim, Donggyou;Yu, Kangmin;Lee, Seungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.11
    • /
    • pp.5-11
    • /
    • 2022
  • The objective of this study is to evaluate the mechanical properties of high-flowable retaining wall material (RWM) incorporated with ground granulated blast-furnace slag (SG) and steel fiber (SF) based on a comparison with those of ordinary portland cement (OPC). To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) are added in the fresh RWM. The compressive, split tensile and flexural strength measurements were performed on the hardened RWM specimens. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out at predetermined periods after water curing. It was found that the mechanical properties of slag cement concrete (SGC) RWM mix are better than those ordinary portland cement concrete (OPC) RWM mix. The effect of SF is remarkable to improve the mechanical properties of RWM mixes. It is noted that the usage of SG shows a beneficial effect to resist water penetration as well as long-term strength development of RWM mixes.

Effect of Steel Fiber Addition on the Mechanical Properties and Durability of High-Flowable Retaining Wall Material (고유동 흙막이 벽체 재료의 역학적 성능 및 내구성에 대한 강섬유 혼입률의 영향)

  • Donggyu Kim;Seungtae Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.6
    • /
    • pp.13-20
    • /
    • 2023
  • This paper is aimed to evaluate the mechanical properties and durability of high-flowable retaining wall material (RWM) with different levels of steel fiber (SF) content. To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) were added in the fresh RWM. The compressive and split tensile strength measurements were performed on the hardened RWM specimens at the predetermined periods. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out to examine mechanical properties of RWM mixes. The durable performances such as chloride ions penetrability and freezing-thawing resistance of RWM mixes were experimentally investigated. As resutls, it was found that the performance of RWM mix with SF were much better than that without SF, especially at the 2% addition of SF. Thus, it is noted that the proper addition of SF in the RWM mix may have a beneficial effect to improve mechanical properties and durability of RWM mixes.

High-Strain-Rate Deformation of Fe-6.5wt.%Si Alloys using a Split Hopkinson Pressure Bar Technique (홉킨슨 압력봉법을 이용한 Fe-6.5wt.%Si 합금의 고변형률속도 거동)

  • Yoon, Young-Ki;Yoon, Hi-Seak;Umakoshi, Yukichi;Yasuda, Hiroyuki Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1073-1081
    • /
    • 2001
  • Many researches have published numerous papers about the high-strain-rate obtained from Split Hopkinson Pressure Bar(SHPB) tests. And 6.5wt%Si steel is widely known as an excellent magnetic material because its magnetostriction is nearly zero. Single crystals are prepared by the Floating Zone(FZ) method, which melts the alloy by the use of a high temperature electron beam in a pure argon gas condition. In this paper, the fracture behavior of the poly crystals and single crystals (DO$_3$phase) of Fe-6.5wt%Si alloy by SHPB test is observed. The comparison of high-strain-rate results with static results was done. Obtained main results are as follows: (1) Fe-6.5wt%Si alloy has higher strength at high-strain-rate tensile. SHPB results of polycrystal are twice as high as static results. (2) From the fractography, the cleavage steps are remarkably reduced in the SHPB test compared with the static test.

Microstructure and Mechanical Behavior of Ultrafine Grained Bulk Al Processed by High Pressure Torsion of the Al Powders (고압비틀림 성형 공정에 의한 Al 분말의 초미세결정 벌크화 및 특성 평가)

  • Joo, Soo-Hyun;Yoon, Seung-Chae;Lee, Chong-Soo;Kim, Hyong-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2010
  • Bulk nanostructured metallic materials are generally synthesized by bottom-up processing which starts from powders for assembling bulk materials. In this study, the bottom-up powder metallurgy and High Pressure Torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. After the HPT process at 473K, the disk samples reached a steady state condition when the microstructure and properties no longer evolve, and equilibrium boundaries with high angle grain boundaries (HAGBs) were dominant. The well dispersed alumina particles played important role of obstacles to dislocation glide and to grain growth, and thus, reduced the grain size at elevated temperature. The small grain size with HAGBs resulted in high strength and good ductility.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens (디스크 시험 및 수소처리 인장시험에 의한 수소배관용 고질소 스테인리스강의 내수소취성 평가 연구)

  • Dong-won, Shin;Min-kyung, Lee;Jeong Hwan, Kim;Ho-seong, Seo;Jae-hun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.16-23
    • /
    • 2022
  • In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

A Study on the Deformation of Cable Pipes via Induction Bending (고주파 벤딩을 통한 케이블 파이프의 변형에 관한 연구)

  • Joo, Yi-Hwan;Qin, Zhen;Moon, Seongmin;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.79-84
    • /
    • 2020
  • Induction bending via high-frequency heating is widely used for manufacturing pipe and section steel bends. It allows productivity improvement, unit cost reduction, delivery time compliance, and good mechanical properties. The recent increase in high-end vessels and offshore plants has raised the demand for high-frequency bending, which should improve the product quality and reduce the costs by simplifying the fabrication process; therefore, the characteristics and performance of this technique must be studied and proper design technology is required. During hot pipe bending via induction heating, the outward wall thickness of the pipe is thinned due to tensile stress and this thickness reduction cannot exceed 12.5%. This study focused on pipe bends with a bending curvature of 5D and their optimization design; in particular, the conditions that can both improve the productivity of the high-frequency bending process and keep the maximum thickness reduction below 12.5% were determined.