DOI QR코드

DOI QR Code

Microstructure and Mechanical Behavior of Ultrafine Grained Bulk Al Processed by High Pressure Torsion of the Al Powders

고압비틀림 성형 공정에 의한 Al 분말의 초미세결정 벌크화 및 특성 평가

  • Joo, Soo-Hyun (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology)) ;
  • Yoon, Seung-Chae (Automotive Steel Research & Development Team, Hyundai HYSCO) ;
  • Lee, Chong-Soo (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology)) ;
  • Kim, Hyong-Seop (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology))
  • 주수현 (포항공과대학교 신소재공학과) ;
  • 윤승채 (현대 HYSCO 기술연구소) ;
  • 이종수 (포항공과대학교 신소재공학과) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Published : 2010.02.28

Abstract

Bulk nanostructured metallic materials are generally synthesized by bottom-up processing which starts from powders for assembling bulk materials. In this study, the bottom-up powder metallurgy and High Pressure Torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. After the HPT process at 473K, the disk samples reached a steady state condition when the microstructure and properties no longer evolve, and equilibrium boundaries with high angle grain boundaries (HAGBs) were dominant. The well dispersed alumina particles played important role of obstacles to dislocation glide and to grain growth, and thus, reduced the grain size at elevated temperature. The small grain size with HAGBs resulted in high strength and good ductility.

Keywords

References

  1. H. S. Kim and Y. Estrin: Appl. Physics Lett., 79 (2001) 4115. https://doi.org/10.1063/1.1426697
  2. R. Z. Valiev and I. V. Alexandrov: Ann. Chim. Sci. Mat., 27 (2002) 3.
  3. H. Gleiter: Nanostruct. Mater., 6 (1995) 3. https://doi.org/10.1016/0965-9773(95)00025-9
  4. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci., 45 (2000) 103. https://doi.org/10.1016/S0079-6425(99)00007-9
  5. S. C. Yoon, S. J. Hong, M. H. Seo, Y. G. Jeong and H. S. Kim: J. Kor. Powder Metall. Inst., 11 (2004) 233. https://doi.org/10.4150/KPMI.2004.11.3.233
  6. H. S. Kim and D. N. Lee: Mater. Trans., 45 (2004) 1829. https://doi.org/10.2320/matertrans.45.1829
  7. J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig and I. E. Anderson: J. Non-Cryst. Solids., 317 (2003) 114.
  8. H. S. Kim: Mater. Sci. Eng., A251 (1999) 100.
  9. S. C. Yoon and H. S. Kim: Mater. Sci. Forum., 503-504 (2006) 221. https://doi.org/10.4028/www.scientific.net/MSF.503-504.221
  10. Y. G. Jeong, M. H. Seo, S. C. Yoon, S. I. Hong and H. S. Kim: J. Metastable Nanocryst. Mater., 24-25 (2005)383. https://doi.org/10.4028/www.scientific.net/JMNM.24-25.383
  11. T. Tokunaga, K. Kaneko and Z. Horita: Mater. Sci. Eng., A490 (2008) 300.
  12. A. A. Gazder, W. Q. Cao, C. H. J Davies and E. V. Pereloma: Mater. Sci. Eng., A497 (2008) 341.
  13. F. J. Humphreys: Scripta. Mater., 51 (2004) 771. https://doi.org/10.1016/j.scriptamat.2004.05.016
  14. H. S. Kim: Mater. Sci. Eng., A315 (2001) 122.
  15. B. S. Moon, H. S. Kim and S. I. Hong: Scripta. Mater., 46 (2002) 131. https://doi.org/10.1016/S1359-6462(01)01209-X
  16. Y. Harai, Y. Ito and Z. Horita: Scripta. Mater., 58 (2008) 469. https://doi.org/10.1016/j.scriptamat.2007.10.037
  17. Y. Y. Wang, P. L. Sun, P. W. Kao and C. P. Chang: Scripta. Mater., 50 (2004) 613. https://doi.org/10.1016/j.scriptamat.2003.11.027
  18. C. Y. Yu, P. L. Sun, P. W. Kao and C. P. Chang: Mater. Sci. Eng., A366 (2004) 310.
  19. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev: Mater. Sci. Eng., A137 (1991) 35.
  20. H. S. Kim and Y. Estrin: Appl. Phys. Lett., 79 (2001) 4115. https://doi.org/10.1063/1.1426697
  21. Y. H Zhao, T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, W. Liu, Y. T. Zhu, Y. Z. Zhou and E. L. Lavernia: Adv. Mater., 20 (2008) 3028. https://doi.org/10.1002/adma.200800214

Cited by

  1. Densification and Nanocrystallization of Water-Atomized Pure Iron Powder Using High Pressure Torsion vol.18, pp.5, 2011, https://doi.org/10.4150/KPMI.2011.18.5.411
  2. Ultrafine Grained Cu-diamond Composites using High Pressure Torsion vol.19, pp.3, 2012, https://doi.org/10.4150/KPMI.2012.19.3.204