Browse > Article
http://dx.doi.org/10.7842/kigas.2022.26.6.16

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens  

Dong-won, Shin (Safety Research Division, Korea Gas Safety Corporation)
Min-kyung, Lee (Safety Research Division, Korea Gas Safety Corporation)
Jeong Hwan, Kim (Safety Research Division, Korea Gas Safety Corporation)
Ho-seong, Seo (Safety Research Division, Korea Gas Safety Corporation)
Jae-hun, Lee (Safety Research Division, Korea Gas Safety Corporation)
Publication Information
Journal of the Korean Institute of Gas / v.26, no.6, 2022 , pp. 16-23 More about this Journal
Abstract
In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.
Keywords
hydrogen pipe; high nitrogen austenitic steel; hydrogen embrittlement; disc pressure test; hydrogen pre-charging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Midillia and I. Dincer, "Key strategies of hydrogen energy systems for sustainability", Int. J. Hydrogen Energy, 32, 511-524, (2007)   DOI
2 D. Apostolou and G. Xydis, "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects", Renew. Sustain. Energy Rev., 113, 109292, (2019)
3 K. Xu, and R., "Tensile and fracture properties of carbon and low alloy steels in high pressure hydrogen", Mahendra, International Hydrogen Conference (Materials Park, OH: ASM International, 2008), 349-356, (2009)
4 S. Kikukawa, F. Yamaga, and H. Mitsuhashi, "Risk assessment of hydrogen fueling stations for 70 MPa FCVs", Int. J. Hydrogen Energy, 33, 7129-7136, (2008)   DOI
5 M. Dadfarnia, A. Nagao, S. Wang, M. L. Martin, B. P. Somerday, and P. Sofronis, "Recent advances on hydrogen embrittlement of structural materials", Int. J. Fract., 196, 223-243, (2015)   DOI
6 B. H. Choe, S. W. Lee, J. K. Ahn, J. H. Lee, and T. W. Lim, "Hydrogen Induced Cracks in Stainless Steel 304 in Hydrogen Pressure and Stress Corrosive Atmosphere", Korea J. Met. Mater., 58, 653-659, (2020)   DOI
7 D. M. Bromley, Hydrogen Embrittlement Testing Of Austenitic Stainless Steels SUS 316 And 316L, Master thesis, 1-23, The University of British Columbia, Canada , (2005)
8 T. Michler, C. S. Marchi, J. Naumann, S. Weber, and M. Martin, "Hydrogen environment embrittlement of stable austenitic steels", Int. J. Hydrogen Energy, 37, 16231-16246, (2012)   DOI
9 D. G. Ulmer and C. J. Altstetter, "Phase relations in the hydrogen-austenite system", Acta Mater., 41, 2235-2241, (1993)   DOI
10 S. M. Teus, V. N. Shyvanyuk, and V. G. Gavriljuk, "Hydrogen-induced 𝛾 → ε transformation and the role of ε-martensite in hydrogen embrittlement of austenitic steels", J. Mater. Sci. Eng. A, 497, 290~294, (2008).   DOI
11 V. Kain, "5 - Stress corrosion cracking (SCC) in stainless steels", Stress Corrosion Cracking, Woodhead Publishing, Elsevier, 199-244, (2011)
12 M. Y. Panchenko, G. G. Mainer, I. A. Tumbusova, S. V. Astafurov, E. V. Melnikov, V. A. Moskvina, A. G. Burlachenko, Y. A. Mirovoy, Y. P. Mironov, N. K. Galchenko, and E. G. Astafurova, "The effect of age-hardening mechanism on hydrogen embrittlement in high-nitrogen steels", Int. J. Hydrogen Energy, 44, 20529-20544, (2019)   DOI
13 K. S. Kim, J. H. Kang, and S. J. Kim, "Nitrogen effect on hydrogen diffusivity and hydrogen embrittlement behavior in austenitic stainless steels", Scr. Mater., 184, 70-73,   DOI
14 M. F. Shehata, S. Schwarz, H. J. Engelmann, and M. Uhlemann, "Influence of hydrogen on mechanical properties of nitrogen supersaturated austenitic stainless steels", Mater. Sci. Tech., 13, 1016-1022, (1997)   DOI
15 M. P. Phaniraj, H. J. Kim, J. Y. Suh, J. H. Shim, S. J. Park, and T. H. Lee, "Hydrogen embrittlement in high interstitial alloyed 18Cr10Mn austenitic stainless steels", Int. J. Hydrogen Energy, 40, 13635-13642, (2015)   DOI
16 H. Kobayashi, T. Sano, H. Kobayashi, S. Matsuoka, and H. Tsujigami, "Current Status of Evaluation and Selecting of Materials to Be Used for Hydrogen Refueling Station Equipment in Japan", ASME 2017 Pressure Vessels and Piping Conference, 1A, 1-7, (2017)
17 ISO 16573, Measurement method for the evaluation of Hydrogen embrittlement resistance of high strength steels, (2015)
18 S. Y. Lee and B. C. Hwang, "Hydrogen Embrittlement of Three High-Manganese Steels Tested by Different Hydrogen Charging Methods", Korea J. Met. Mater., 55, 695-702, (2017)
19 N. H. Kim, Y. J. Kim, K. B. Yoon, and Y. H. Ma, "Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test", Trans. Korean Soc. Mech. Eng. A, 37, 753-760, (2013)
20 H. U. Seo, Y. H. Ma, and K. B. Yoon, "Evaluation of Hydrogen Embrittlement Behavior in INCONEL Alloy 617 by Small Punch Test", Trans. of the Korean Hydrogen and New Energy Society, 21, 340-345, (2010)
21 ISO 11114-4, Transportable gas cylinders-Compatibility of cylinder and valve materials with gas contents-Part4: Test methods for selecting steels resistant to hydrogen embrittlement, (2017)
22 L. Briottet, I. Moro, and P. Lemoine, "Quantifying the hydrogen embrittlement of pipeline steels for safety considerations", Int. J. Hydrogen Energy, 37, 17616-17623, (2012)   DOI
23 L. Briottet, R. Batisse, G. de Dinechin, P. Langlois, and L. Thiers, "Recommendations on X80 steel for the design of hydrogen gas transmission pipelines", Int. J. Hydrogen Energy, 37, 9423-9430, (2012)   DOI
24 P. Bortot, M. Bellingardi, and S. Beretta., "Fitness for Purpose Design of a Steel Cylinder for Hydrogen-Natural Gas Blends", Pressure Vessels and Piping Conference, 44533, (2011)
25 H. Li, Z. Jiang, Z. Zhang, and Y. Yang, "Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel", J. Iron and Steel Research International, 16, 58-61, (2009)
26 X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, and X. Song, "Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention", X. Acta Metallurgica Sinica (English Letters), 33, 759-773, (2020)    DOI
27 J. T. Barnby, "The initiation of ductile failure by fractured carbides in an austenitic stainless steel", Acta Metallurgica, 15, 903-909, (1967)   DOI
28 T. Chida, Y. Hagihara, E. Akiyama, K. Iwanaga, S. Takagi, M. Hayakawa, H. Ohishi, D. Hirakami, and T. Tarui, "Comparison of Constant Load, SSRT and CSRT Methods for Hydrogen Embrittlement Evaluation Using Round Bar Specimens of High Strength Steels", Isij International, 56, 1268-1275, (2016)   DOI