DOI QR코드

DOI QR Code

Effect of Steel Fiber Addition on the Mechanical Properties and Durability of High-Flowable Retaining Wall Material

고유동 흙막이 벽체 재료의 역학적 성능 및 내구성에 대한 강섬유 혼입률의 영향

  • Donggyu Kim (Underground Space Safety Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Seungtae Lee (Dept. of Civil Engineering, Kunsan National University)
  • Received : 2023.05.07
  • Accepted : 2023.05.30
  • Published : 2023.06.01

Abstract

This paper is aimed to evaluate the mechanical properties and durability of high-flowable retaining wall material (RWM) with different levels of steel fiber (SF) content. To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) were added in the fresh RWM. The compressive and split tensile strength measurements were performed on the hardened RWM specimens at the predetermined periods. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out to examine mechanical properties of RWM mixes. The durable performances such as chloride ions penetrability and freezing-thawing resistance of RWM mixes were experimentally investigated. As resutls, it was found that the performance of RWM mix with SF were much better than that without SF, especially at the 2% addition of SF. Thus, it is noted that the proper addition of SF in the RWM mix may have a beneficial effect to improve mechanical properties and durability of RWM mixes.

본 연구는 강섬유(SF) 혼입률에 따른 고유동 흙막이 벽체 재료(RWM)의 역학적 성능 및 내구성을 평가하기 위한 것으로써, 흙막이 벽체 재료의 재료분리저항성, 유동성, 연행공기량을 확보하기 위하여 적정량의 고성능감수제(SP), 공기연행제(AEA) 및 증점 안정화제(VMA)를 사용하였다. 흙막이 벽체 재료 경화체의 압축 및 쪼갬 인장강도를 소정의 재령에서 측정하였으며, 흙막이 벽체 재료의 역학적 성능은 표면전기저항성 및 흡수율 실험을 통하여 고찰하였다. 또, 염소이온 침투저항성 및 동결융해 저항성 실험을 통하여 흙막이 벽체 재료의 내구성능을 고찰하였다. 실험결과에 의하면, 강섬유를 적용한 배합이 강섬유 무혼입 배합에 비하여 우수한 성능을 나타내었으며, 2% 적용 배합이 경제성 및 성능 관점에서 상대적으로 효과적인 것으로 관찰되었다. 따라서, 적절한 SF의 적용은 흙막이 벽체 재료의 성능 향상에 기여할 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 한국건설기술연구원 주요사업 "인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발" 연구과제에서 연구비를 지원받아 수행된 결과입니다. 이에 감사드립니다.

References

  1. Cao, Q., Gao, Q., Gao, R. and Jia, J. (2018), "Chloride penetration resistance and frost resistance of fiber reinforced expansive self-consolidating concrete", Construction and Building Materials, Vol. 158, pp. 719~727.
  2. Feo, L., Ascione, F., Penna, R., Lau, D. and Lamberti, M. (2020), "An experimental investigation on freezing and thawing durability of high performance fiber reinforced concrete (HPFRC)", Composites and Structures, Vol. 234, 111673.
  3. Frazao, C., Camoes, A., Barros, J. and Goncalves, D. (2015), "Durability of steel fiber reinforced self-compacting concrete", Construction and Building Materials, Vol. 80, pp. 155~166. https://doi.org/10.1016/j.conbuildmat.2015.01.061
  4. Gastaldini, A. L. G., Isaia, G. C., Hoppe, T. F., Missau, F. and Saciloto, A .P. (2009), "Influence of the use of rice husk ash on the electrical resistivity of concrete: A technical and economic feasibility study", Construction and Building Materials, Vol. 23, No. 11, pp. 3411~3419. https://doi.org/10.1016/j.conbuildmat.2009.06.039
  5. Huang, W. H. (2001), "Improving the properties of cement-fly ash grout using fiber and superplasticizer", Cement and Concrete Research, Vol. 27, No. 3, pp. 395~406. https://doi.org/10.1016/S0008-8846(97)00032-X
  6. Kim, D. G. and Lee, S. T. (2021), "Mechanical properties of ternary blended cement concrete incorporating pulverized reject ash", International Journal of Highway Engineers, Vol. 23, No. 6, pp. 43~51. https://doi.org/10.7855/IJHE.2021.23.6.043
  7. Lee, S. T. and Park, K. P. (2017), "Mechanical properties and durability of concrete incorporating air-cooled slag", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 18, No. 3, pp. 356~363. (In Korean)
  8. Li, L., Wang, H., Wu, J., Du, X.,Zhang, X. and Yao, Y. (2022), "Experimental and numerical investigation on impact dynamic performance of steel fiber reinforced concrete beams at elevated temperatures", Journal of Building Engineering, Vol. 47, 103841.
  9. Miao, C., Mu, R., Tian, Q. and Sun, W. (2002), "Effect of sulfate solution on the frost resistance of concrete with and without steel fiber reinforcement", Cement and Concrete Research, Vol. 32, pp. 31~34. https://doi.org/10.1016/S0008-8846(01)00624-X
  10. Park, J. S., Ahan, K. H., You, Y. J. and Lee, J. S. (2022), "Evaluating the freeze-thaw damage of concrete with respect to water to cement ratio using surface rebound value", Journal of Recycled Construction Resources Institute, Vol. 10, No. 2, pp. 143~151. (In Korean)
  11. Ran, J., Li, T., Chen, D., Shang, L., Li, W. and Zhu, Q. (2021), "Mechanical properties of concrete reinforced with corrugated steel fiber under uniaxial compression and tension", Structures, Vol. 34, pp. 1890~1902. https://doi.org/10.1016/j.istruc.2021.08.135
  12. Song, P. S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Construction and Building Materials, Vol. 18, No. 9, pp. 669~673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  13. Wang, J., Dai, Q., Si, R., Ma, Y. and Guo, S. (2020), "Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC)", Journal of Cleaner Production, Vol. 277, 123180.
  14. Xu, B.W. and Shi, H. S. (2009), "Correlations among mechanical properties of steel fiber reinforced concrete", Construction and Building Materials, Vol. 23, No. 12, pp. 3468~3474. https://doi.org/10.1016/j.conbuildmat.2009.08.017
  15. Zaki, R. A., AbdelAleem, B. H., Hassan, A. A. A. and Colbourne, B. (2021), "Impact resistance of steel fiber reinforced concrete in cold temperatures", Cement and Concrete Composites, Vol. 122, 104116.