• Title/Summary/Keyword: high tensile steel

Search Result 1,069, Processing Time 0.027 seconds

The Effect of Fiber Volume Fraction on the Tension Softening Behavior of Steel Fiber-Reinforced Ultra High Strength Concrete (섬유혼입률이 강섬유보강 초고강도 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Hong, Ki-Nam;Han, Sang-Hoon;Kim, Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The influence of steel fiber volume on the tension softening behavior in steel fiber-reinforced ultra high strength concrete was investigated. Three-point bending test (TPBT) with notched beams was performed and inverse analysis method by Uchida et al. was adopted to obtain the tension softening behaviors from the results of TPBT. It could be found that the intial stiffness was constant regardless of steel fiber volume, the increase of steel fiber volume fraction made the tensile strength higher, but all of the curves converged on an asymptote with a crack width. It was proposed the equation of softening curve expressed by combination of plastic behavior part and exponential descending behavior part considering the steel fiber volume fraction and $\omega_0$, which is corresponding to the maximum crack width of plastic area. Thereafter, the crack propagation analysis using finite element method with smeared crack model was also carried out and it was confirmed that the proposed equation had a good agreement with the experimental results.

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam (층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.369-379
    • /
    • 2012
  • The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing concrete structures designed without consideration of the impact or blast load with high strain rate are endangered by those unexpected extreme loads. In this study, to improve the impact resistance, the static and impact behaviors of concrete beams caste with steel fiber reinforced concrete (SFRC) with 0~1.5% (by volume) of 30 mm long hooked steel fibers were assessed. Test results indicated that the static and impact resistances, flexural strength, ductility, etc., were significantly increased when higher steel fiber volume fraction was applied. In the case of the layered concrete (LC) beams including greater steel fiber volume fraction in the tensile zone, the higher static and impact resistances were achieved than those of the normal steel fiber reinforced concrete beam with an equivalent steel fiber volume fraction. The impact test results were also compared with the analysis results obtained from the single degree of freedom (SDOF) system anaysis considering non-linear material behaviors of steel fiber reinforced concrete. The analysis results from SDOF system showed good agreement with the experimental maximum deflections.

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

Study on the Flexible Strength of U-shape Hybrid Composite Beam (신형상 U형 하이브리드 합성보의 휨성능에 대한 연구)

  • Kim, Sung-Bae;Kim, Sang-Seup;Lee, Won-Rok;Kim, Jung-Yeon;Lee, Seung-Bae;Ryu, Deog-Su;Kim, Dae-Hoi
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.521-534
    • /
    • 2012
  • In this research, we carry this study into effect on the basis of utilizing character of composite beam and developing applicable section to some of high strength steel. We evaluated flexural capacity of composite beam that is a unit member through experiments. The existing nominal strength formula of Composite Beam which is a previous method was reviewed and the experiment had been progressive by using each composite members as main variables though the result. Capacity evaluation of U-shape Hybrid Forming Beam(HyFo Beam) which is a new shape show as follow from the result. First, it is resonable to resist demand moment by couple moments which are occurred in concrete compressive-strength and steel tensile-strength. Second, the capacity was stably increased in proportion to the depth of beams and the thickness of steel plates. The last, HyFo Beam was showed as ductile behavior.

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

Behavior of the Crack Initiation, Transition and Fatigue Crack Growth of Rail Steel (레일강의 균열발생·천이 및 피로균열진전거동)

  • Lee, Jong Sun;Kang, Ki Weon;Choi, Rin;Kim, Jung Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.33-42
    • /
    • 1999
  • In the present study, crack initiation criteria, static failure and tensile mode fatigue behavior for a rail steel are evaluated to assure the railway vehicle's safety. The transverse fissure, which is the most critical damage in the rail, is initiated by the maximum shear stress and its location is subsurface. In addition, the possibility of transition from the shear mode to the mixed mode increases with increasing the length of subsurface crack. Because of the brittleness by the welding, the fracture toughness of the welded part is lower than of the base metal. For low ${\Delta}K$, the stage II fatigue crack growth rates of the welded part is slower than of the base metal but, for high ${\Delta}K$, this different behavior for fatigue crack growth rate is nearly diminished. These trends are more remarkable for low stress ratio, R=0.1. It is believed that this behavior is caused by the change of the microstructure which that of the welded part is coarser than of base metal.

  • PDF

Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading

  • Thirumalaiselvi, A.;Anandavalli, N.;Rajasankar, J.;Iyer, Nagesh R.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.167-184
    • /
    • 2016
  • This paper presents the details of Finite Element (FE) analysis carried out to determine the limiting deformation capacity and failure mode of Laced Steel-Concrete Composite (LSCC) beam, which was proposed and experimentally studied by the authors earlier (Anandavalli et al. 2012). The present study attains significance due to the fact that LSCC beam is found to possess very high deformation capacity at which range, the conventional laboratory experiments are not capable to perform. FE model combining solid, shell and link elements is adopted for modeling the beam geometry and compatible nonlinear material models are employed in the analysis. Besides these, an interface model is also included to appropriately account for the interaction between concrete and steel elements. As the study aims to quantify the limiting deformation capacity and failure mode of the beam, a suitable damage model is made use of in the analysis. The FE model and results of nonlinear static analysis are validated by comparing with the load-deformation response available from experiment. After validation, the analysis is continued to establish the limiting deformation capacity of the beam, which is assumed to synchronise with tensile strain in bottom cover plate reaching the corresponding ultimate value. The results so found indicate about $20^{\circ}$ support rotation for LSCC beam with $45^{\circ}$ lacing. Results of parametric study indicate that the limiting capacity of the LSCC beam is more influenced by the lacing angle and thickness of the cover plate.