• 제목/요약/키워드: high temperatures

검색결과 4,997건 처리시간 0.03초

초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향 (The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings)

  • 임채현;김범규;여용주;박용환
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

플라이애쉬 활용 Alumino silicate계 내화마감재의 고온특성 (High Temperature Properties of Alumino Silicate Fire Protection Materials Using Fly ash)

  • 송훈;추용식;이종규;박남규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.689-692
    • /
    • 2008
  • 고강도콘크리트의 화재시의 내화성능 확보와 관련한 대책 및 이에 관한 다수의 연구가 진행되고 있는데 이 중, 고강도콘크리트 자체의 온도상승을 저감하기 위한 방편으로 내화성 마감재의 적용이 검토되고 있다. 일반적으로 시멘트계 재료는 C-S-H, 및 CH가 단계적으로 열 분해되며 압축강도는 저하하게 된다. 내화성능을 발휘하기 위해 고온에서 강도감소가 작고 안정적인 고온특성을 보인다면 보다 효과적으로 성능 발현이 가능하다. 본 연구는 효과적인 내화성능의 발현을 위한 내화성 마감재 개발을 위한 기초연구로 내화성능이 우수하다고 알려진 알루미노 실리케이트계 재료를 내화성 마감에 적용하기 위해 고온특성에 대해 검토하였다.

  • PDF

Absorption of SO2 at High Temperatures by Ionic Liquids and the Absorption Mechanism

  • Tian, Shidong;Hou, Yucui;Wu, Weize;Ren, Shuhang;Qian, Jianguo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2791-2796
    • /
    • 2014
  • The capture of $SO_2$ at or close to the temperatures of real flue gas is much more attractive in application. In this work, two kinds of ionic liquids (ILs) based on lactate anion were used to absorb $SO_2$ at high temperatures from 100 to $120^{\circ}C$. The ILs show high absorption capacities of over one mol $SO_2$ per mol IL at $110^{\circ}C$. The absorption of $SO_2$ by the ILs based on lactate anion is reversible and the ILs can be reused for the capture of $SO_2$ at high temperatures with high absorption capacity and thermal stability. Furthermore, the absorption mechanism of $SO_2$ by the ILs was studied by FT-IR, $^1H$ NMR and $^{13}C$ NMR spectra. It has been found that there are strong chemical interactions between the ILs and $SO_2$. Also the absorption mechanism is different when there is water present in ILs compared to when there is not.

Modelling and numerical simulation of concrete structures subject to high temperatures

  • Ostermann, Lars;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.73-88
    • /
    • 2014
  • The paper deals with a model founded on the physical processes in concrete subject to high temperatures. The model is developed in the framework of continuum damage mechanics and the theory of porous media and is demonstrated on selected structures. The model comprises balance equations for heat transfer, mass transfer of water and vapour, for linear momentum and for reaction. The balance equations are completed by constitutive equations considering the special behaviour of concrete at high temperatures. Furthermore, the limitation and decline of admissible stresses is achieved by using a composed, temperature depending crack surface with a formulation for the damage evolution. Finally, the complete coupled model is applied to several structures and to different concrete in order to determine their influence on the high-temperature-behaviour.

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

Solid Phase Crystallization Kinetics of Amorphous Silicon at High Temperatures

  • Hong, Won-Eui;Kim, Bo-Kyung;Ro, Jae-Sang
    • 한국표면공학회지
    • /
    • 제41권2호
    • /
    • pp.48-50
    • /
    • 2008
  • Solid phase crystallization (SPC) of amorphous silicon is usually conducted at around $600^{\circ}C$ since it is used in the application of flat panel display using thermally susceptible glass substrate. In this study we conducted SPC experiments at temperatures higher than $600^{\circ}C$ using silicon wafers. Crystallization rate becomes dramatically rapid at higher temperatures since SPC kinetics is controlled by nucleation with high value of activation energy. We report SPC kinetics of high temperatures compared to that of low temperatures.

고온 .senter dot. 고습환경이 CFRP 적층 원통부재의 압궤특성에 미치는 영향 (Effects of high temperatures and hygrothermals on the collapse characteristics of CFRP thin-walled laminates)

  • 곽훈이;김정호;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.650-654
    • /
    • 1995
  • In this study, in order to measure energy-absorbing charactistics in collapse test of CFRP thin-walled laminates and interpretate the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angel is observed and collapse characteristics is compared with the influence of high temperatures and hygrothermals. Especially, we supposed to clearly understand reationship between collapse characteristics in proportion to the variety of orientation angel and moisture absorbing. The value of the maximum loading, mean loading,rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurement lower than in static collapse test regarding compared with collapse characteristics conformity with the variety of the CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same and the biggest amount of energy is shown in the CFRP circular laminates with orientation angel of 15 .deg.. Therefore, in the case of use to CFRP circular laminates with axisymmetric mode, CFRP thin-walled structal members with orientation angel of 10 .deg. , 15 . deg. are generally useful.

  • PDF

고온 고습하에서 CFRP 적층 원통부재의 충격 압궤특성 (A study on impact collapse characteristics of CFRP thin-walled laminates under high temperatures and hygrothermals)

  • 김정호;곽훈이;양인영
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.30-38
    • /
    • 1998
  • In this study, in order to measure energy-absorbing characteristics in impact test of CFRP thin-walled laminates and interpret the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angle is observed and impact collapse characteristics of no moisture absorbing status is compared with that under the environments of high temperatures and hygrothermals. Especially, we try to obtain quantitative design data to develop CFRP thin-walled laminates with energy characteristics of optimum impact absorbing. The value of the maximum loading, mean loading, rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured much lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurements lower than in static collapse test CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same each other and the biggest amount of energy is shown in CFRP circular laminates with orientation angle of $15^{\circ}$. Therefore, in the case of using CFRP circular laminates with axisymmetric mode, CFRP thin-walled structural members with orientation angle of $10^{\circ}$, $15^{\circ}$ has generally best condition.

  • PDF

Predicting the bond between concrete and reinforcing steel at elevated temperatures

  • Aslani, Farhad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.643-660
    • /
    • 2013
  • Reinforced concrete structures are vulnerable to high temperature conditions such as those during a fire. At elevated temperatures, the mechanical properties of concrete and reinforcing steel as well as the bond between steel rebar and concrete may significantly deteriorate. The changes in the bonding behavior may influence the flexibility or the moment capacity of the reinforced concrete structures. The bond strength degradation is required for structural design of fire safety and structural repair after fire. However, the investigation of bonding between rebar and concrete at elevated temperatures is quite difficult in practice. In this study, bond constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve. The proposed relationships at elevated temperature are compared with experimental results.

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.