• 제목/요약/키워드: high temperature treatment

검색결과 2,887건 처리시간 0.031초

Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis

  • Yoo, Sang-Hun;Chang, Yoon Hyuk
    • Preventive Nutrition and Food Science
    • /
    • 제21권4호
    • /
    • pp.338-347
    • /
    • 2016
  • The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G', G") of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities.

비음처리에 따른 붓순나무의 광합성, 엽록소 함량 및 엽 특성 (Photosynthesis, Chlorophyll Contents and Leaf Characteristics of Illicium anisatum under Different Shading Treatments)

  • 손석규;한진규;김찬수;황석인;정진현;이성기
    • 한국환경과학회지
    • /
    • 제16권11호
    • /
    • pp.1313-1318
    • /
    • 2007
  • Illicium anisatum was bred under four different light intensity. Those condition were full sunlight(PPFD $1600{\mu} mol\;m^{-2}s^{-1}$), 30% treatment(PPFD $400{\mu} mol\;m^{-2}s^{-1}$), 50% treatment(PPFD $250{\mu} mol\;m^{-2}s^{-1}$) and 70% treatment(PPFD $100{\mu} mol\;m^{-2}s^{-1}$), respectively. Chlorophyll a and b were increased according to decrease of light intensity. Thirty percent and 50% treatment had not significant different in chlorophyll a and b. Thirty percent treatment was shown the best photosynthetic activity through invested photosynthetic rate, intercellular $CO_2$ concentration and water use efficiency. Photosynthetic activity trend of 50% treatment was similar to 30% treatment. Seventy percent treatment was shown the best photosynthetic activity at low light intensity but that was decreased to lower value than 30% and 50% treatment under high intensity. Control, bred full sunlight, was shown the worst photosynthetic activity at measured all light intensity. That result could imply that was caused by photo-inhibition because of long term exposed of shade tolerant plant at high light intensity. Leaf characteristics had not significant different in leaf length, width and area but leaf dry weight had similar trend to photosynthetic activity.

내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스 (Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.629-634
    • /
    • 2009
  • The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

플라즈마 용사된 알루미나-지르코니아 복합체의 고온 마모.마찰 거동 (High Temperature Wear Behavior of Plasma-Sprayed Zirconia-Alumina Composite Coatings)

  • 김장엽;임대순;안효석
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.33-38
    • /
    • 1996
  • High temperature wear behaviors of plasma-sprayed ZrO$_{2}$-$Y_{2}O_{3}$ composite coatings were investigated for high temperature wear resistance applications. The composite powders containing 20, 50, 80 vol% of alumina for plasma spray were made by spray drying method. Wear tests with composite coated specimens were performed at temperature ranges from room temperature to 800$^{\circ}$C. Wear tests were also carried out with heat treated specimens at room temperature. The microstructural change of coatings and the worn surface were examined by SEM and XRD. Sharp increase of wear loss at high temperature wear test was observed in specimens containing 50 and 80 vol% alumina. Similar trend was observed in the heat treated coatings. The measured residual stress was increased with increased alumina contents and heat treating temperatures. Residual stress induced during heat treatment appeared to be responsible to the observed harmful effect of alumina additions on the high temperature wear.

온주밀감의 저장전 고온 예조가 저장중 과실의 착색 및 품질에 미치는 영향 (Effects of High Temperature of Pretreatment on the Color Development and Quality of Satsuma Mandarins)

  • 남기웅;권혁모
    • 한국유기농업학회지
    • /
    • 제10권3호
    • /
    • pp.57-66
    • /
    • 2002
  • 온주밀감 마착색 과실을 대상으로 고온 예조를 통해 과피의 착색 증진과 저장성 향상을 위하여 시험한 결과, 고온 예조 처리한 과실은 과피색을 촉진시켰다. 저장중 자연감량은 착색도와 관계없이 20$^{\circ}$ 예조처리 구에서 적었으며 부패과 발생은 3월 중순까지는 20$^{\circ}$ 예조 처리구에서 적었으나, 저장후기인 3월 하순부터는 효과가 없었다. 저장중 가용성고형물과 산함량은 상온 예조보다는 고온 예조구에서 높은 경향을 보였으나 각 처리간에 유의성은 없었다.

  • PDF

깍두기의 발효숙성 온도가 관능적, 이화학적 및 미생물학적 특성에 미치는 영향 (Effects of Fermentation Temperature on the Sensory, Physicochemical and Microbiological Properties of Kakdugi)

  • 김성단;장명숙
    • 한국식품영양과학회지
    • /
    • 제26권5호
    • /
    • pp.800-806
    • /
    • 1997
  • Effect of temperature on Kakdugi during fermentation was investigated by measuring sensory, physicochemical and microbiological, properties up to 57 days. The diced(2.5$\times$2.5$\times$2.5cm) Chinese radishes(Ra-phanus sativus L.) with other ingredients were fermented under the different temperatures. Kakdugi were stored at 4$^{\circ}C$ after keeping at 2$0^{\circ}C$ for 12 hours(treatment E) from initial fermentation to the end at each temperature on preparation. The pH was decreased to the range of 4.14~4.29 in the initial of pH 5.8, and total acidity was increased 2~4 times more than that of in the initial period (0.24%). And the changes of treatment A, B, and C were nearly constant up to 57 days in the range of 0.80~0.88% (pH 4.1). The changes of vitamin C showed sigmoidal curve, increasing significantly in the palatable period after decreasing gradually in the initial period. The content of vitamin C in treatment E was rapidly decreased, but that of treatment C was kept high content up to 57days. the number of lactic acid bacteria was remarkably increased in palatable period and was gradually decreased thereafter. The scores of aroma, taste, overall acceptability in sensory evaluation during the fermentation was high in order of treatment E, C, D, B and A. The scores of sensory evaluation treatment D and E during fermentation was rapidly decreased, however, treatment A, B and C were maintained. Changes of lactic acid bacteria, and sensory properties, among treatment A, B and C which kept a good quality up to 57 days, had high scores of sensory evaluation, abundant vitamin C in the palatable period. The result showed that Kakdugi fermented at 4$^{\circ}C$ after keeping at 2$0^{\circ}C$ for 36 hours had better taste and quality than those of other treatments.

  • PDF

SAE 1078 강의 오스템퍼링 열처리시 가스 퀜칭 속도에 따른 미세조직의 변화 (Change in Microstructure with the Gas Quenching Rate during Austempering Treatment of SAE 1078 Steel)

  • 권기훈;박현준;여국현;이영국;김상권
    • 열처리공학회지
    • /
    • 제36권3호
    • /
    • pp.121-127
    • /
    • 2023
  • When high carbon steel is heated in an appropriate austenizing temperature range and subjected to austempering, the size and shape of lamellar structure can be controlled. The high carbon steel sheet having the pearlite structure has excellent elastic characteristics because it has strong restoring force when properly rolled, and is applied in a process known as patenting-process using lead bath. In the case of isothermal treatment using lead-medium, it is possible to quickly reach a uniform temperature due to high heat transfer characteristics, but it is difficult to replace it with process technology that requires treatment to remove harmfulness lead. In this study, we intend to develop fluidization technology using garnet powder to replace the lead medium. After heating the high-carbon steel, the cooling rate was changed by compressed air to the vicinity of the nose of the continuous cooling curve, and then maintained for 90 s and then exposed to room temperature. The microstructure of the treated specimens were analyzed and compared with the existing products treated with lead bath. The higher the flow rate of compressed air, the faster the cooling rate to the pearlite transformation temperature, so lamellar spacing decreases and the hardness tends to increase.

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

고출력 다이오드 레이저를 이용한 프레스 드로우금형의 열처리 특성 (Heat Treatment Characteristics of a Press Draw Mold by Using High Power Diode Laser)

  • 황현태;소상우;김종도;김영국;김병훈
    • 열처리공학회지
    • /
    • 제22권6호
    • /
    • pp.339-344
    • /
    • 2009
  • Recently, Laser surface treatment technologies have been used to improve wear charactenitics and fatigue resistance of metal molding. When the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature. From the results of the experiments, it has been shown that the maximum hardness is approximately 788Hv when the heat treatment temperature and the travel speed are $1150^{\circ}$ and 2 mm/sec, respectively.

배할 및 자상-인사이징 처리가 소나무 정각재의 고온건조 특성에 미치는 영향 (Effects of the Knife-Incising and Longitudinal Kerfing Treatment on High-Temperature Drying Characteristics of Red Pine Square Timber)

  • 이창진;이남호;오승원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권5호
    • /
    • pp.677-684
    • /
    • 2016
  • 본 연구에서는 배할과 자상-인사이징 처리가 두께 15 cm 크기 소나무 정각재의 고온건조 특성에 미치는 영향을 확인하기 위해 수행되었다. 건조 후 최종함수율은 5.6% ~ 7.5% 범위였으며, 전처리조건에 따른 함수율분포에 차이는 없는 것으로 조사되었다. 배할의 경우 재면할렬 발생을 감소시키는 것이 가능하였으며, 뒤틀림은 약간 감소되는 경향을 나타내었다. 배할과 자상-인사이징 처리는 내부할렬과 건조 수축률에 영향을 미치지 않는 것으로 나타났다.