Browse > Article
http://dx.doi.org/10.5322/JES.2007.16.11.1313

Photosynthesis, Chlorophyll Contents and Leaf Characteristics of Illicium anisatum under Different Shading Treatments  

Son, Seog-Gu (Warm-temperature Forest Research Center, KFRI)
Han, Jin-Gyu (Department of Genetics Forest Resources, KFRI)
Kim, Chan-Soo (Warm-temperature Forest Research Center, KFRI)
Hwang, Suk-In (Warm-temperature Forest Research Center, KFRI)
Jeong, Jin-Heon (Warm-temperature Forest Research Center, KFRI)
Lee, Sung-Gie (Warm-temperature Forest Research Center, KFRI)
Publication Information
Journal of Environmental Science International / v.16, no.11, 2007 , pp. 1313-1318 More about this Journal
Abstract
Illicium anisatum was bred under four different light intensity. Those condition were full sunlight(PPFD $1600{\mu} mol\;m^{-2}s^{-1}$), 30% treatment(PPFD $400{\mu} mol\;m^{-2}s^{-1}$), 50% treatment(PPFD $250{\mu} mol\;m^{-2}s^{-1}$) and 70% treatment(PPFD $100{\mu} mol\;m^{-2}s^{-1}$), respectively. Chlorophyll a and b were increased according to decrease of light intensity. Thirty percent and 50% treatment had not significant different in chlorophyll a and b. Thirty percent treatment was shown the best photosynthetic activity through invested photosynthetic rate, intercellular $CO_2$ concentration and water use efficiency. Photosynthetic activity trend of 50% treatment was similar to 30% treatment. Seventy percent treatment was shown the best photosynthetic activity at low light intensity but that was decreased to lower value than 30% and 50% treatment under high intensity. Control, bred full sunlight, was shown the worst photosynthetic activity at measured all light intensity. That result could imply that was caused by photo-inhibition because of long term exposed of shade tolerant plant at high light intensity. Leaf characteristics had not significant different in leaf length, width and area but leaf dry weight had similar trend to photosynthetic activity.
Keywords
Illicium anisatum; Shading treatment; Photoinhibition; Photosynthetic rate; Intercellular $CO_2$ concentration; Water use efficiency;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hansen U., Fiedler B., Rank B., 2002, Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance, Tree, 16, 354-364   DOI
2 Thomas T., Lei R. T., Kitao M., Koike T., 1996, Functional relationship between chlorophyll content and leaf reflectance, and lightcapturing efficiency of Japanese forest species, Physiologia Plantarum., 96, 411-418   DOI
3 Verhoeven A. S., Swanberg A, Thao M., Whiteman J., 2005, Seasonal changes in leaf antioxidant systems and xanthophylls cycle characteristics in Taxus x media growing in sun and shade environments, Physiologia Plantarum., 123, 482-434
4 Valladares F., Chico J. M, Aranda I., Balaguer L., Dizengremel P., Manrique E., Dreyer E., 2002, The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linkes to a greater physiological plasticity, Tree 16, 395-403
5 Evans J. R., 1994, Developmental constrains on photosynthesis: effects of light and nutrition, In : Baker N. R. ed. Photosynthesis and the environment, Kluwer Acadimic Press, Dordrecht, pp. 281 -304
6 Hakala M., Tuominen I., Keranen M., Tyystja rvi T., Tyystjarvi E., 2005, Evidence for the role of the oxygenevolving manganese complex in photoinhibition of photosystem, Biochimica et Biophysica Acta, 1706, 68-80   DOI   ScienceOn
7 Lu Q., Wen X., Lu C., Zhang Q., Kuang T., 2003, Photoinhibition and photoprotection in senescent leaves of field-grown wheat plants, Plant Physl. and Bioch., 41, 749-754   DOI   ScienceOn
8 Marini R. P., Barden J. A., 1982, Light penetration on overcast and clear days, and specific leaf weight in apple trees as affected by summer of dormant pruning, Soc. Hort. Sci. Am. J., 107, 39-43
9 Salisbury F. B., Ross C. W., 1992, Plant physiology, 4th ed., Wadsworth Publishing Company, Belmont, USA, p. 257
10 Kim P. G., Lee E. J, 2001, Ecophysiolosy of photosynthesis 2 : Adaptation of photosynthetic apparatus to changing environment, Kor. Jr. of Agric. and For. Meteor. 3(3), 171-176   과학기술학회마을
11 Terashima I., Hikosaka K., 1995,. Comparative ecophysiology of leaf and canopy photosynthesis, Plant, Cell and Env., 18, 1111-1128   DOI   ScienceOn
12 Makino A., Sato T., Nakano H., Mae T., 1997, Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances, Planta, 203, 390-398   DOI
13 Barnes J. D., Balaguer L., Manrique E., Elvira S., Davison A W., 1992, A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichen and higher plants, Environmental and Experimental Botany, 32(2), 88-100
14 Valladares F., Pearcy R. W., 1997, Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutijolia: Plant, Cell and Env., 20, 24-36
15 Jo M. H., 1989, Coloured woody plants of Korea, Academybook, 152-300
16 Je S. M., Son S. G., Woo S. Y., Byun K. O., Kim C. S., 2006, Photosynthesis and chlorophyll contents of Chloranthus glaber under different shading treatments, Kor. Jr. of Agric, and For. Meteor., 8(2), 54-60   과학기술학회마을
17 Ashraf M., Arfan M., Shahbaz M., Ahmad M., Iamil A., 2002, Gas exchange characteristics and water relations in some elite skra cultivates under water deficit, Photosynthetica, 40(4), 615-620   DOI
18 Valladares F., Wright S. J., Lasso E., Kitajirna K., Pearcy R. W., 2000, Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest, Ecol., 81, 1925-1936   DOI   ScienceOn
19 Rosenqvist E., Wingsle G., Ogren E., 1991, Photoinhibition of photosynthesis in intact willow leaves in response to moderate changes in light and temperature. Physiologia Plantarum., 83, 390-396   DOI