• Title/Summary/Keyword: high temperature heating,

Search Result 1,684, Processing Time 0.033 seconds

Pyrolysis Behavior of Pulverized Coal Particles at High Heating Rate (미분탄 입자의 고속가열 열분해거동 해석)

  • JANG, JIHOON;HAN, KARAM;YU, GEUN SIL;LIM, HYEON SOO;LEE, WOOK RYUN;PARK, HO YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.260-268
    • /
    • 2019
  • The pyrolysis characteristics of pulverized coal particle was numerically analyzed with the drop tube furnace. Based on the simulated gas flow field in the drop tube furnace, the particle velocity, temperature and volatile evolution were calculated with the fourth order Runge-Kutta method. The effects of changes in reactor wall temperature and particle diameter on the pyrolysis behavior of coal particle were investigated. The particle heating rate was very sensitive to the reactor wall temperature and particle size, that is, the higher wall temperature and the smaller particle size resulted in the higher heating rate and the consequent quicker volatile evolution.

Curing Temperature of Concrete Using Bubble Sheet with Carbon-based Photothermal Materials (탄소계 광발열 소재 혼입 버블시트를 적용한 콘크리트의 양생온도 특성)

  • Lee, Seung-Min;Lee, Hyeon-Jik;Baek, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.45-46
    • /
    • 2023
  • This study examined the curing temperature of concrete with a photothermal insulation sheet to shorten the curing time of concrete as part of construction cost and period reduction. According to the experiment results, the heating performance effect is confirmed through the temperature difference between photothermal insulation sheet and bubble sheet. And it has a high curing temperature in the order of bubble sheet (photo heating material B) > bubble sheet (photo heating material A) > bubble sheet on same layers.

  • PDF

Compressive Behavior of Concrete with Loading and Heating (가열 및 재하에 의한 콘크리트의 압축거동)

  • Kim, Gyu-Yong;Jung, Sang-Hwa;Lee, Tae-Gyu;Kim, Young-Sun;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 2010
  • The performance deformation of concrete can be caused by many factors such as load, thermal strain and creep at high temperature. Japan, Europe and America have been doing various experimental studies to solve these problems about thermal properties of concrete at high temperature, each study has generated different results due to a heating methods, heating hours, size of specimens and performance of a the loading, heating method, size of specimen and heating machine. There has been no unified experimental method so far. Therefore, this study reviewed experimental studies on the strength performance of concrete subject to heating and loading method. As a result, compressive strength of specimen prestressed increase in the temperature range of between $100^{\circ}C$ and about $400^{\circ}C$. Also, results can be analyzed as compare equation of compressive strength at elevated temperature with CEN and CEB code.

A Study on the 3D Imaging of High Temperature Heating Cement Paste and the Analysis of Variation of the Pore Structure (고온 가열 시멘트 페이스트의 3D 영상화 및 세공구조 변화 분석에 관한 연구)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.147-148
    • /
    • 2020
  • In case of high temperature damage such as fire, the durability of concrete is reduced due to the collapse of internal pore tissue. Therefore, in this paper, we are going to analyze the pore structure of cement paste hardening agent using MIP analysis and build up 3D data produced using X-ray CT tomography. The test specimen is made of cement paste from W/C 0.4. As the temperature of heating increased, the amount of air gap and the diameter of air gap in cement paste increased. It is judged that the air gap structure inside cement collapsed due to the evaporation of the hydrate, gel count, capillary water, etc. inside the cement due to the high temperature.

  • PDF

Study on Thermal and Structural Properties of Epoxy/Elastomer Blend (에폭시/엘라스토머 블렌드의 열적 및 구조적 특성에 관한 연구)

  • Lee Kyoung-Yong;Lee Kwan-Woo;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.556-560
    • /
    • 2004
  • In this paper, thermal and structural properties of epoxy/elastomer blend were measured by DSC, TGA and FESEM. Specimens were made of dumbbell forms by the ratio of 5, 10, 15, and 20[phr] by changing elastomer content. The measuring temperature ranges of DSC were from -20[℃] to 150[℃] and heating rate was 4[℃/min]. And the measuring temperature ranges of TGA were from 0[℃] to 800[℃], and heating rate was 5[℃/min]. Also we observed structure of specimens through FESEM with magnification of 1000 times and voltage of 15[kV] by breaking quenched specimens. As experimental results, we could know that thermal and structural properties were improved according to decrease of elastomer content. Because it increased glass transition temperature, high temperature and structure of elastic epoxy.

Measurement of Trans Fatty Acid formation and Degree of Rancidity in Fat and Oils According to Heating Conditions (가열조건에 따른 유지의 트랜스 지방산 생성과 산패도 측정에 관한 연구)

  • Ahn, Myung-Soo;Suh, Mi-Sook;Kim, Hyun-Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.4
    • /
    • pp.469-478
    • /
    • 2008
  • In this study, degree of rancidity and trans fatty acid formation were examined in fat and oils, including soybean oil (SB), canola oil (CA), corn germ oil (CO), olive oil (OL), palm oil (PO), and beef tallow (BT), during heating for 10-130 minutes at 160-200$^{\circ}C$. In order to determine the rancidity of the fat and oils, acid values (AV), iodine values (IV), viscosity, and color were measured. Changes in the amounts of fatty acids and the formation of trans fatty acids were measured using GC and HPLC. For all groups, AV increased, IV decreased, and coefficients of viscosity and color increased as the heating temperature and heating time increased, indicating there were positive correlations between the heating temperature and time and AV. In addition, all groups had similar amounts of trans fatty acids, with the exception of the beef tallow; however, its level only slightly increased with heating. The olive oil had the lowest trans fatty acid content and the lowest amount created by heating. The order of trans fatty acid amounts generated while heating was BT>PO>CO>CA>SB>OL. According to the study results, the deep frying temperature during cooking should be 160-180$^{\circ}C$ in order to reduce AV and the amount of trans fatty acids that are formed. In addition, it is better to remove beef tallow during cooking and avoid heating at high temperatures since it results in high levels of trans fatty acids. The correlation between the amount of trans fatty acids and AV was positive, while the correlation between the amount of trans fatty acids and IV was negative, indicating that AV and trans fatty acid levels increase while IV decreases as the deep frying temperature and time increase. From the results, it was found that reducing the deep frying temperature and time can lessen increases in AV and trans fatty acids, and decrease IV. Accordingly, to reduce AV and trans fatty acid formation, the ideal deep frying conditions would be to use olive oil or soybean oil rather than beef tallow or palm oil at a temperature of 160-180$^{\circ}C$.

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.

Evaluation on Vapor Pressure of Ultra-high-strength Concrete by Heating Condition (가열조건에 따른 초고강도 콘크리트의 내부수증기압력 평가)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Bo-Kyeong;Seo, Won-woo;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.224-225
    • /
    • 2017
  • Ultra-high-strength concrete exposed to high temperature is likely to cause spalling. Spalling is caused by the vapor pressure of the concrete, and the vapor pressure may be different depending on the heating conditions of the concrete. Therefore, in this study, a ring-type restrained specimen was fabricated using ultra-high-strength concrete and the vapor pressure generated in the concrete by heating condition(rapid and slow heating) was evaluated.

  • PDF

An Experimental Study on the Mechanical Properties of High Strength of High Strength Concrete Subject to High Temperature Heating (고온가열을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Tae-Gyu;Sin, Seung-Bong;Kim, Young-Sun;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.9-12
    • /
    • 2007
  • Recently, research and development related to high strength concrete for the high rise and large scale reinforced concrete building has been actively promoted in worldwide by national and private research project. But, it is reported that violent explosive explosion would be happened when it was exposed in fire. In the existed study, a explosion in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement paste and aggregate, and causes crack by thermal stress. In case of the Europe, Japan and America, they have studied the explosion for a long time. However it would hardly study the explosion in domestic, So it is needed base on mechanical properties of fire deterioration in high strength concrete. Therefore, this study is intend as an mechanical properties of specimen to high heating by heating and load test machine and $700^{\circ}C$. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF