Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.3.260

Pyrolysis Behavior of Pulverized Coal Particles at High Heating Rate  

JANG, JIHOON (KEPCO RI)
HAN, KARAM (KEPCO RI)
YU, GEUN SIL (KEPCO RI)
LIM, HYEON SOO (KEPCO RI)
LEE, WOOK RYUN (KEPCO RI)
PARK, HO YOUNG (KEPCO RI)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.3, 2019 , pp. 260-268 More about this Journal
Abstract
The pyrolysis characteristics of pulverized coal particle was numerically analyzed with the drop tube furnace. Based on the simulated gas flow field in the drop tube furnace, the particle velocity, temperature and volatile evolution were calculated with the fourth order Runge-Kutta method. The effects of changes in reactor wall temperature and particle diameter on the pyrolysis behavior of coal particle were investigated. The particle heating rate was very sensitive to the reactor wall temperature and particle size, that is, the higher wall temperature and the smaller particle size resulted in the higher heating rate and the consequent quicker volatile evolution.
Keywords
Pulverized coal; Pyrolysis; Volatile; DTF; Volatile; Particle temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. D. Smoot and M. D. Horton, "Propagation of laminar pulverised coal-air flames", Progress in Energy and Combustion Science, Vol. 3, No. 4, 1977, pp. 235-258, doi: https://doi.org/10.1016/0360-1285(77)90014-4.   DOI
2 R. E Peck, R. A. Altenkirch, and K. C. Midkiff, "Fuel-Nitrogen Transformation in One -Dimensional Coal-Dust Flames", Combustion and Flame, Vol. 55, No. 3, 1984, pp. 331-340, doi: https://doi.org/10.1016/0010-2180(84)90172-X.   DOI
3 J. Ma, T. H. Fletcher, and B. W. Webb, "Conversion of coal tar to soot during coal pyrolysis in a post-flame environment", Symposium (International) on Combustion, Vol. 26, No. 2, 1996, pp. 3161-3167, doi: https://doi.org/10.1016/S0082-0784(96)80161-5.   DOI
4 D. Bradley, M. Lawes, M. J. Scott, and N. Usta, "The Structure of coal-air-$CH_4$ Laminar flames in a low-pressure burner: CARS measurements and modeling studies", Combustion and Flame, Vol. 124, No. 1-2, 2001, pp. 82-105, doi: https://doi.org/10.1016/S0010-2180(00)00186-3.   DOI
5 D. W. Van Krevelen, C. Van Heerden, and F. J. Huntjens, "Physiochemical aspects of the pyrolysis of coal and related organic compounds", Fuel, Vol. 30, No. 11, 1951, pp. 253-259.
6 B. C. Young, D. P. McCollar, B. J. Webeer, and M. L. Jones, "Temperature measurement of buelah char in a novel laminar flow reactor", Fuel, Vol. 67, No. 1, 1988, pp. 40-44, doi: https://doi.org/10.1016/0016-2361(88)90010-5.   DOI
7 J. D. Freihaut, W. M. Procia, and D. J. Seery, "Chemical characteristics of tars produced in a novel low-severity, entrained-flow reactor", Energy Fuels, Vol. 3, No. 6, 1989, pp. 692-703, doi: https://doi.org/10.1021/ef00018a006.   DOI
8 C. R. Monson, "Char oxidation at elevated pressure", Phd thesis, Brigham Young University, 1992.
9 H. Juntgen and K. H. Van Heek, "An update of german non-isothermal coal pyrolysis work", Fuel Processing Technology, Vol. 2, No. 4, 1979, pp. 261-293, doi: https://doi.org/10.1016/0378-3820(79)90018-3.   DOI
10 D. B. Anthony, J. B. Howard, H. C. Hottel, and H. P. Meissener, "Rapid devolatilization of pulverized coal", Symposium (International) on Combustion, Vol. 15, No. 1, 1974, pp. 1303-1317, doi: https://doi.org/10.1016/S0082-0784(75)80392-4.   DOI
11 S. Niksa, L. E. Heyd, W. B. Russel, and D. A. Saville, "On the role of heating rate in rapid coal devolatilization", Symposium (International) on Combustion, Vol. 20, No. 1, 1985, pp. 1445-1453, doi: https://doi.org/10.1016/S0082-0784(85)80637-8.   DOI
12 M. A. Serio, D. G. Hamblen, J. R. Markham, and P. R. Solomom, "Kinetics of volatile product evolution in coal pyrolysis: experiment and theory", Energy Fuels, Vol. 1, No. 2, 1987, pp. 138-152, doi: https://doi.org/10.1021/ef00002a002.   DOI
13 G. R. Johnson, P. Murdoch, and A. Williams, "A Study of the Mechanism of the Rapid Pyrolysis of Single Particles of Coal", Fuel, Vol. 67, N. 6, 1989, pp. 834-842, doi: https://doi.org/10.1016/0016-2361(88)90159-7.   DOI
14 C. Park and J. P. Appleton, "Shock-tube measurement of soot oxidation rates", Combustion and Flame, Vol. 20, No. 3, 1973, pp. 369-379, doi: https://doi.org/10.1016/0010-2180(73)90029-1.   DOI
15 M. A. Nettleton and R. Stirling, "The influence of additives on the burning of clouds of coal particles in shocked gases", Combustion and Flame, Vol. 22, No. 3, 1974, pp. 407-414, doi: https://doi.org/10.1016/0010-2180(74)90054-6.   DOI
16 K. R. Doolan and J. C. Mackie, "Kinetics of rapid pyrolysis of a calcium-exchanged brown coal and of a calcium model compound", Symposium (International) on Combustion, Vol. 20, No. 1, 1985, pp. 1463-1469, doi: https://doi.org/10.1016/S0082-0784(85)80639-1.   DOI
17 R. J. Flaxman and W. L. H. Hallett, "Flow and particle heating in an entrained flow reactor", Fuel, Vol. 66, No 5, 1987, pp. 607-611, doi: https://doi.org/10.1016/0016-2361(87)90266-3.   DOI
18 P. R. Solomon, M. A. Serio, and E. M. Suuberg, "Coal Pyrolysis: Experiments, Kinetic Rates and Mechanisms", Progress in Energy and Combustion Science, Vol. 18, No. 2, 1992, pp. 133-220, doi: https://doi.org/10.1016/0360-1285(92)90021-R.   DOI
19 T. H. Fletcher, "Time-resolved temperature measurements of individual coal particles during devolatilization", Combust. Sci. and Tech., Vol. 63, No. 1-3, 1989, pp. 89-105, doi: https://doi.org/10.1080/00102208908947120.   DOI
20 T. H. Fletcher, "Time-resolved particle temperature and mass loss measurements of bituminous coal during devolatilization", Combustion and Flame, Vol. 78, No. 2, 1989, pp. 223-236, doi: https://doi.org/10.1016/0010-2180(89)90127-2.   DOI
21 H. Y. Park, D. H. Park, Y. S. Shin, and G. K. Jeong, "Characterization of Particle Heating in Pressurized Drop Tube Furnace", The Korean Society for Energy, Korea, 1996, p. 129.
22 S. V. Patankar, "Numerical heat transfer and fluid flow", McGraw-Hill, USA, 1979.
23 S. Badzioch and P. G. W. Hawksley, "Kinetics of thermal decomposition of pulverised coal particles", Ind. Eng. Chem. Proc. Des. Dev., Vol. 9, No. 4, 1970, pp. 521-530, doi: https://doi.org/10.1021/i260036a005.   DOI
24 L. D. Tomothy, A. F. Sarofim, and J. M. Beer, "Characteristics of single particle coal combustion", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 1123-1130, doi: https://doi.org/10.1016/S0082-0784(82)80288-9.   DOI
25 H. Kobayashi, J. B. Howard, and A. F. Sarofim, "Coal devolatilization at high temperatures", Symposium (International) on Combustion, Vol. 16, No. 1, 1977, pp. 411-425, doi: https://doi.org/10.1016/S0082-0784(77)80341-X.   DOI
26 E. M. Suuberg, W. A. Peters, and J. B. Howard, "Product Compositions and Formation Kinetics in Rapid Pyrolysis of Pulverised Coal Implications for Combustion", Symposium (International) on Combustion, Vol. 17, No. 1, 1979, pp. 117-130, doi: https://doi.org/10.1016/S0082-0784(79)80015-6.   DOI
27 A. W. Scaroni, P. L Walker Jr, and R. H. Essenhigh, "Kinetics of lignite pyrolysis in an entrained-flow, isothermal furnace", Fuel, Vol. 60, No 1, 1981, pp. 71-76, doi: https://doi.org/10.1016/0016-2361(81)90035-1.   DOI
28 P. R. Solomon, M.A. Serio, R.M. Carangelo, and J.R. Markham, "Very rapid coal pyrolysis", Fuel, Vol65, 1986, pp. 182-190, doi: https://doi.org/10.1016/0016-2361(86)90005-0.   DOI
29 J. H. Jang, G. R. Han, G. S. Yoo, W. R. Lee, H. S. Lim, and H. Y. Park, "Numerical and experimental studies on devolatilizaton behavior of pulverized coal in a drop tube furnace", J. Korean Soc. Combust., Vol. 24, No. 2, 2019, pp. 34-40.   DOI
30 S. D. Kim, "Coal energy conversion technology", Minumsa, Korea, 1986.
31 D. Merrick, "Mathematical Models of the Thermal Decomposition of Coal 1. Evolution of volatile matter", Fuel, Vol. 62, No. 5, 1983, pp. 534-539, doi: https://doi.org/10.1016/0016-2361(83)90222-3.   DOI