• 제목/요약/키워드: high temperature degradation

검색결과 866건 처리시간 0.037초

합성수지 메탈시트와 3면겹침용 채움재가 공법화된 합성고분자계 시트를 이용한 건식화 방수기술에 대한 실험적 연구 (Experimental Study on Dry Waterproofing Technology Using Synthetic Polymer Sheet Comprised of Synthetic Resin Metal Sheets and Tri-Layered Filler)

  • 구자응;김범수;이정훈;송제영;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.139-140
    • /
    • 2017
  • This technology employs a method of forming a single-ply PLUS waterproofing sheet layer comprised of applying a single-ply synthetic polymer layer on a vibrating structure (steel frame, RC) or an inclined surface by using a T joint lap-filling coil and an embedded metal coated sheet. The T - joint reinforcing lap-filling coil was used to block the ingress channel of the rainwater by applying the material in the vulnerable area where the three sides of the waterproof sheet overlapped. Conventional waterproofing techniques have a problem in that the waterproof sheet is pierced because the end portion of the waterproof sheet applied to the vertical portion is fixed by a nail, and the sealant applied to the end portion of the sheet cannot easily secure long-term waterproof durability due to the influence of the external environment. Therefore, the developed technology secured the waterproof durability against the vertical part by using the embedded metal sheet. In addition, automatic hot-air fusing is used to improve the quality of waterproof construction and point fixation method using fixed hardware. This is a technology that is not significantly restricted in the high degradation level regions of domestic waterproof construction environments in Korea such as low-temperature environment, wet floor.

  • PDF

송이의 세포외 분비 $\beta$-Glucosidase 효소의 특성 (Characteristics of Extracellular $\beta$-Glucosidase in Tricholoma matsutake)

  • 민응기;한영환
    • KSBB Journal
    • /
    • 제15권1호
    • /
    • pp.9-13
    • /
    • 2000
  • Cellulose 분해에 관련된 $\beta$-Glucosidase 효소 활성의 특성 파악을 위하여 송이균사(Tricholoma matsutake DGUM 26001)의 액체 배양시 세포외로 분비되는 $\beta$-Glucosidase 효소를 부분정제하여 그 특성을 조사하였다. 효소 활성에 미치는 적정 온도는 55-$70^{\circ}C$이었고 최적 온도는 $65^{\circ}C$이었다. 적정 효소활성에 영향을 주는 적정 pH는 3.0-5.0 범위였으며 최적 pH는 4.0이었다. Salicin을 기질로 최적 조건하에서 $\beta$-Glucosidase 효소의 비활성도는 18.7 unit/mg protein이었다. 열안정성은 $60^{\circ}C$이하의 온도에 60분간 열처리시 약 90%이상의 효소활성을 유지하였다. $Fe^{++}$이온은 효소활성을 촉진하였으나, $Hg^{++}$$Cu^{++}$이온은 효소활성을 매우 억제하였다. Salicin에 대한 효소활성을 100으로 하였을 때, cellobiose는 48.6%의 상대적 효소활성을 나타내었으며, cellobiose에 대한 Km값 및 Vmax값은 각각 0.12mM과 0.02umol/min었다.

  • PDF

A Review of Withering in the Processing of Black Tea

  • Deb, Saptashish;Jolvis Pou, K.R.
    • Journal of Biosystems Engineering
    • /
    • 제41권4호
    • /
    • pp.365-372
    • /
    • 2016
  • Purpose: Tea is the most frequently consumed drink worldwide, next to water. About 75% of the total world tea production includes black tea, and withering is one of the major processing steps critical for the quality of black tea. There are two types of tea withering methods: physical and chemical withering. Withering can be achieved by using tat, tunnel, drum, and trough withering systems. Of these, the trough withering system is the most commonly used. This study focuses on the different types of withering, their effect on the various quality attributes of tea, and other aspects of withering methods that affect superior quality tea. Results: During physical withering, tea shoots loose moisture content that drops from approximately 70-80% to 60-70% (wet basis). This leads to increased sap concentration in tea leaf cells, and turgid leaves become flaccid. It also prevents tea shoots from damage during maceration or rolling. During chemical withering, complex chemical compounds break down into simpler ones volatile flavor compounds, amino acids, and simple sugars are formed. Withering increases enzymatic activities as well as the concentration of caffeine. Research indicates that about 15% of chlorophyll degradation occurs during withering. It is also reported that during withering lipids break down into simpler compounds and catechin levels decrease. Improper withering can cause adverse effects on subsequent manufacturing operations, such as maceration, rolling, fermentation, drying, and tea storage. Conclusion: Freshly harvested leaves are conditioned physically and chemically for subsequent processing. There is no specified withering duration, but 14-18 h is generally considered the optimum period. Proper and even withering of tea shoots greatly depends on the standards of plucking, handling, transportation, environmental conditions, time, and temperature. Thus, to ensure consumption of high quality tea, the withering step must be monitored carefully.

골 재흡수 치료를 위한 파미드로네이트를 함유한 이식형 생분해성 PLGA 웨이퍼의 제조와 특성결정 (Preparation and Characterization of Pamidronate-loaded PLGA Wafer for the Treatment of Bone Resorption)

  • 유제영;김상욱;강길선;성하수;정제교
    • 폴리머
    • /
    • 제26권5호
    • /
    • pp.680-690
    • /
    • 2002
  • 골 재흡수 치료를 목적으로 파미드로네이트를 지속적으로 방출하는 제형으로 제조하기 위하여 락타이드-글리콜라이드 공중합체 (PLGA, 락타이드 : 글리콜라이드 몰비 = 75 : 25, 분자량 20000 g/mole 및 90000 g/mole)를 이용하여 직접압축 성형방법으로 생분해성 웨이퍼를 제조하였다. 약물과 고분자의 함량비 웨이퍼의 두께, PLGA 분자량 등을 조절하여 PLGA 웨이퍼를 제조하였고 이들의 형태학적 특성과 방출거동 및 분해거동을 살펴보았다. 웨이퍼의 제조는 혼합된 분말을 웨이퍼 제작용 몰드에 넣은 후 프레스를 이용하여 일정 압력으로 일정시간 동안 상온에서 가압하여 제조하였다. 제조된 웨이퍼는 약물의 초기함량이 증가할수록 방출속도가 빠르게 나타났으며, 제형의 두께가 두꺼워질수록 시간이 경과함에 따라 약물의 방출속도가 증가하였다. 또한 고분자의 분자량이 큰 것이 작은 것에 비해 상대적으로 초기 약물 방출량이 적고 방출되는 속도 또한 느려져. 저분자보다 오랫동안 약물이 방출되었다. 이러한 약물전달 시스템은 압축성형방법에 의해 제조하므로 제조가 간단하고 약물방출속도를 정확하게 제어할 수 있으므로 이식을 위한 제형으로 제조시 유용하게 쓰일 것으로 예상되었다.

Chemical Components, Antitermite and Antifungal Activities of Cinnamomum parthenoxylon Wood Vinegar

  • ADFA, Morina;ROMAYASA, Ari;KUSNANDA, Arif Juliari;AVIDLYANDI, Avidlyandi;YUDHA S., Salprima;BANON, Charles;GUSTIAN, Irfan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.107-116
    • /
    • 2020
  • Termiticidal and fungicidal activities of wood vinegar from Cinnamomum parthenoxylon (CP) stem wood have been evaluated against Coptotermes curvignathus and wood rotting fungi (Schizophyllum commune and Fomitopsis palustris). The utilized CP wood vinegar was produced in the operating temperature range 250-300℃ pyrolysis. A no-choice test was applied for evaluating termiticidal activity with 33 active termites and antifungal activity using the agar media assay. The result showed that an increase in the concentrations of CP wood vinegar significantly raised the mortality of termite. CP wood vinegar showed high termiticidal activity, organic acids (acetic acid 42.91%, 3-butenoic acid 6.89%, butanoic acid, 2-propenyl ester 2.26%), and ketones (1-hydroxy-2-propanone 5.14%, 3-methylcyclopentane-1,2-dione 2.34%) might be largely contributed to termiticidal activity in addition to other minor components. Furthermore, CP wood vinegar exhibited significant inhibition of fungal growth. These data showed that CP wood vinegar was more toxic to white-rot fungi (S. commune) than brown-rot (F. palustris). The results suggested that phenolic compounds from lignin degradation were responsible for good antifungal activity.

Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance

  • Qiu, Jin;Jiang, Liming;Usmani, Asif
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.323-334
    • /
    • 2021
  • Concrete structures may rarely collapse in fire incidents but fire induced damage to structural members is inevitable as a result of material degradation and thermal expansion. This requires certain repairing measures to be applied to restore the performance of post-fire members. A brief review on investigation of post-fire damage of concrete material and concrete structural members is presented in this paper, followed by a review of post-fire repair research regarding various types of repairing techniques (FRP, steel plate, and concrete section enlargement) and different type of structural members including columns, beams, and slabs. Particularly, the fire scenarios adopted in these studies leading to damage are categorized as three levels according to the duration of gas-phase temperature above 600℃ (t600). The repair effectiveness in terms of recovered performance of concrete structural members compared to the initial undamaged performance has been summarized and compared regarding the repairing techniques and fire intensity levels. The complied results have shown that recovering the ultimate strength is achievable but the stiffness recovery is difficult. Moreover, the current fire loading scenarios adopted in the post-fire repair research are mostly idealized as constant heating rates or standard fire curves, which may have produced unrealistic fire damage patterns and the associated repairing techniques may be not practical. For future studies, the realistic fire impact and the system-level structural damage investigation are necessary.

TiO2 나노입자와 3-MPTMS로 코팅 처리한 면섬유의 표면 특성과 항균성 및 광분해효과 (Surface Characteristics, Antimicrobial and Photodegradation Effect of Cotton Fibers Coated with TiO2 Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS))

  • 박수진;이재웅;김삼수;이상오
    • 한국염색가공학회지
    • /
    • 제30권4호
    • /
    • pp.245-255
    • /
    • 2018
  • In this study, cotton fabrics were coated with $TiO_2$ nanoparticles using 3-mercaptopropyltrimethoxysilane(3-MPTMS), which is highly reactive to cotton fabrics, as a medium, and the characteristics, antimicrobial properties, and photodegradation properties of the fibers were measured. The manufacturing process is as follows. (1) 3-MPTMS was added to isopropanol, and $TiO_2$ colloid was added to the mixture to prepare a solution. (2) Cellulose fibers were immersed in the prepared $3-MPTMS/TiO_2$ solution, stirred for 90 minutes at $45^{\circ}C$ in a constant temperature water bath, and dried thereafter. In order to identify the morphology of the cellulose fibers coated with $TiO_2$ nanoparticles, the surface was observed with a scanning electron microscope(SEM), and SEM-EDS was measured to identify the adhesion of $TiO_2$ nanoparticles. The SEM images showed $TiO_2$ nanoparticle and 3-MPTMS coated layers on the fibers and it was identified that $TiO_2$ nanoparticles were attached to the cellulose fibers. The antimicrobial activity of $3-MPTMS/TiO_2$-treated cotton fabrics was measured using a bacterial reduction method. $3-MPTMS/TiO_2$ cellulose fibers which was irradiated by ultra violet light, showed antimicrobial activity against Escherichia coli(ATCC 43895) and Staphylococcus aureus(ATCCBAA-1707) unlike unirradiated fibers. The cellulose fibers were stained with methylene blue and the photodegradation performance of the stained fabrics was analyzed. The stained fabrics showed high degradation performance with photolytic reactions of $TiO_2$ nanoparticles.

반연속주조된 대형 블룸에서 발생하는 거시편석 및 석출물 거동 (Behavior of Macrosegregation and Precipitation Developed in Semi-continuously Cast Large Bloom)

  • 김혜주;이형록;김경아;이주동;오경식;권상흠;김동규
    • 한국주조공학회지
    • /
    • 제39권1호
    • /
    • pp.7-13
    • /
    • 2019
  • Few studies of large blooms over 700 mm thick among those used for the forging of raw materials have been reported. The cooling rate difference between the surface and the center of a large bloom is large, and the degradation of the mechanical properties is likely in cases involving excessively coarse precipitates resulted from the slow cooling rate of a large bloom after casting. Therefore, a schematic investigation of the growth behaviors of precipitates while varying their locations in blooms is necessary. The dissolution behaviors of precipitates were investigated by simulating a reheating process during which the bloom is heated to a high temperature. The segregation behavior of the as-cast large bloom was also investigated. Reheating specimens were obtained after an isothermal heat treatment at $1150^{\circ}C$ with various holding times to simulate the reheating process, with the samples undergoing a subsequent water quenching step. The precipitates were extracted using an electrolytic extractor and a particle size analysis was conducted with the aid of SEM, EDS, and TEM. In the present work, Al oxide, MnS and Nb carbide were mainly observed.

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.