Browse > Article
http://dx.doi.org/10.5658/WOOD.2020.48.1.107

Chemical Components, Antitermite and Antifungal Activities of Cinnamomum parthenoxylon Wood Vinegar  

ADFA, Morina (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
ROMAYASA, Ari (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
KUSNANDA, Arif Juliari (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
AVIDLYANDI, Avidlyandi (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
YUDHA S., Salprima (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
BANON, Charles (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
GUSTIAN, Irfan (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
Publication Information
Journal of the Korean Wood Science and Technology / v.48, no.1, 2020 , pp. 107-116 More about this Journal
Abstract
Termiticidal and fungicidal activities of wood vinegar from Cinnamomum parthenoxylon (CP) stem wood have been evaluated against Coptotermes curvignathus and wood rotting fungi (Schizophyllum commune and Fomitopsis palustris). The utilized CP wood vinegar was produced in the operating temperature range 250-300℃ pyrolysis. A no-choice test was applied for evaluating termiticidal activity with 33 active termites and antifungal activity using the agar media assay. The result showed that an increase in the concentrations of CP wood vinegar significantly raised the mortality of termite. CP wood vinegar showed high termiticidal activity, organic acids (acetic acid 42.91%, 3-butenoic acid 6.89%, butanoic acid, 2-propenyl ester 2.26%), and ketones (1-hydroxy-2-propanone 5.14%, 3-methylcyclopentane-1,2-dione 2.34%) might be largely contributed to termiticidal activity in addition to other minor components. Furthermore, CP wood vinegar exhibited significant inhibition of fungal growth. These data showed that CP wood vinegar was more toxic to white-rot fungi (S. commune) than brown-rot (F. palustris). The results suggested that phenolic compounds from lignin degradation were responsible for good antifungal activity.
Keywords
wood vinegar; Cinnamomum parthenoxylon; termiticidal activity; GC-MS; fungicidal;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Pardede, A., Adfa, M., Kusnanda, A.J., Ninomiya, M., Koketsu, M. 2017. Flavonoid rutinosides from Cinnamomum parthenoxylon leaves and their hepatoprotective and antioxidant activity. Medicinal Chemistry Research 26(9): 2074-2079.   DOI
2 Sidi, M.B., Islam, M.T., Ibrahim, Y., Omar, D. 2012. Effect of insecticide residue and spray volume application of azadirachtin and rotenone on Trichogramma papilionis (Hymenoptera: Trichogrammatidae). International Journal of Agriculture and Biology 14(5): 805-810.
3 Suresh, G., Pakdel, H., Rouissi, T., Brar, S.K., Fliss, I., Roy, C. 2019. In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechnology Research and Innovation 3: 47-53.   DOI
4 Theapparat, Y., Chandumpai, A., Leelasuphakul, W., Laemsak, N., Ponglimanont, C. 2014. Physicochemical characteristics of wood vinegars from carbonization of Leucaena leucocephala, Azadirachta indica, Eucalyptus camaldulensis, Hevea brasiliensis and Dendrocalamus asper. Kasetsart Journal-Natural Science 48(6): 916-938.
5 Tiilikkala, K., Fagernas, L., Tiilikkala, J. 2010. History and use of wood pyrolysis liquids as biocide and plant protection product. The Open Agriculture Journal 4: 111-118.   DOI
6 Wada, T. 1997. Charcoal Handbook. Forest management section, agriculture, forestry and fisheries division, Bureau of labour and economic affairs, Tokyo Metropolitan Government. Tokyo, Japan, pp.92.
7 Wei, X., Li, G.H., Wang, X.L., He, J.X., Wang, X.N., Ren, D.M., Lou, H.X., Shen, T. 2017. Chemical constituents from the leaves of Cinnamomum parthenoxylon (Jack) Meisn (Lauraceae). Biochemical Systematics and Ecology 70: 95-98.   DOI
8 Wititsiri, S. 2011. Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin Journal of Science & Technology 33(3): 349-354.
9 Yoon, S.-M., Kim, Y.-S., Kim, Y.-K., Kim, T.-J. 2018. A novel endo-$\beta$-1, 4-xylanase from Acanthophysium sp. KMF001, a wood rotting fungus. Journal of the Korean Wood Science and Technology 46(6): 670-680.   DOI
10 Yatagai, M., Nishimoto, M., Hori, K., Ohira, T. Shibata, A. 2002. Termiticidal activity of wood vinegar, its components and their homologues. Journal of Wood Science 48(4): 338-342.   DOI
11 Adfa, M., Sanusi, A., Manaf, S., Gustian, I., Banon, C. 2017b. Antitermitic activity of Cinnamomum parthenoxylon leaves against Coptotermes curvignathus. Oriental Journal of Chemistry 33(6): 3063-3068.   DOI
12 Adfa, M., Hattori, Y., Yoshimura, T., Koketsu, M. 2012. Antitermite activity of 7-alkoxycoumarins and related analogs against Coptotermes formosanus Shiraki. International Biodeterioration & Biodegradation 74: 29-135.
13 Adfa, M., Hattori, Y., Ninomiya, M., Funahashi, Y., Yoshimura, T., Koketsu, M. 2013. Chemical constituents of Indonesian plant Protium javanicum Burm. f. and their antifeedant activities against Coptotermes formosanus Shiraki. Natural Product Research 27(3): 270-273.   DOI
14 Adfa, M., Kusnanda, A.J., Saputra, W.D., Banon, C., Efdi, M., Koketsu, M. 2017a. Termiticidal activity of Toona sinensis wood vinegar against Coptotermes curvignathus Holmgren. Rasayan Journal of Chemistry 10(4): 1088-1093.
15 Adfa, M., Kusnanda, A.J., Livandri, F., Rahmad, R., Darwis, W., Efdi, M., Ninomiya, M., Koketsu, M. 2017c. Insecticidal activity of Toona sinensis against Coptotermes curvignathus Holmgren. Rasayan Journal of Chemistry 10(1): 153-159.
16 Arsyad, W.O.M., Basri, E., Hendra, D., Trisatya, D.R. 2019. Termite resistance of impregnated Jabon wood (Anthocephalus cadamba Miq.) with combined impregnant agents. Journal of the Korean Wood Science and Technology 47(4): 451-458.   DOI
17 Celimene, C.C., Micales, J.A., Ferge, L., Young, R.A. 1999. Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53(5): 491-497.   DOI
18 Zhai, M., Shi, G., Wang, Y., Mao, G., Wang, D., Wang, Z. 2015. Chemical compositions and biological activities of pyroligneous acids from walnut shell. BioResources 10(1): 1715-1729.
19 Blanchette, R.A. 1995. Degradation of the lignocellulose complex in wood. Canadian Journal of Botany 73(S1): S999-S1010.   DOI
20 Casida, J.E., Gammon, D.W., Glickman, A.H., Lawrence, L.J. 1983. Mechanisms of selective action of pyrethroid insecticides. Annual Review of Pharmacology and Toxicology 23(1): 413-438.   DOI
21 Fengel, D., Wegener, G. eds. 2011. Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, Germany.
22 Guillen, M.D., Manzanos, M.J. 2005. Characteristics of smoke flavourings obtained from mixtures of oak (Quercus sp.) wood and aromatic plants (Thymus vulgaris L. and Salvia lavandulifolia Vahl.). Flavour and Fragrance Journal 20(6): 676-685.   DOI
23 Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of methyl methacrylate-impregnated wood to subterranean termite attack. Journal of the Korean Wood Science and Technology 46(6): 748-755.   DOI
24 Kartal, S.N., Imamura, Y., Tsuchiya, F., Ohsato, K. 2004. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production. Bioresource Technology 95(1): 41-47.   DOI
25 Kuswanto, E., Ahmad, I., Dungani, R. 2015. Threat of subterranean termites attack in the Asian countries and their control: A review. Asian Journal of Applied Sciences 8(4): 227-239.   DOI
26 Mun, S.-P., Nicholas, D.D., 2017. Effect of proanthocyanidin-rich extracts from Pinus radiata bark on termite feeding deterrence. Journal of the Korean Wood Science and Technology 45(6): 720-727.   DOI
27 Mathew, S., Zakaria, Z.A. 2015. Pyroligneous acid-the smoky acidic liquid from plant biomass. Applied Microbiology and Biotechnology 99(2): 611-622.   DOI
28 Mohan, D., Pittman Jr, C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 20(3): 848-889.   DOI
29 Mohan, D., Shi, J., Nicholas, D.D., Pittman Jr, C.U., Steele, P.H., Cooper, J.E. 2008. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. Chemosphere 71(3): 456-465.   DOI
30 Mun, S.-P., Ku, C.-S., Park, S.-B. 2007. Physicochemical characterization of pyrolyzates produced from carbonization of lignocellulosic biomass in a batch-type mechanical kiln. Journal of Industrial and Engineering Chemistry 13(1): 127-132.
31 Nakai, T., Kartal, S.N., Hata, T., Imamura, Y. 2007. Chemical characterization of pyrolysis liquids of wood-based composites and evaluation of their bio-efficiency. Building and Environment 42(3): 1236-1241.   DOI
32 Oramahi, H.A.,Yoshimura, T. 2013. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. Journal of Wood Science 59(4): 344-350.   DOI
33 Oramahi, H.A., Yoshimura, T., Diba, F., Setyawati, D., Nurhaida. 2018. Antifungal and antitermitic activities of wood vinegar from oil palm trunk. Journal of Wood Science 64(3): 311-317.   DOI