DOI QR코드

DOI QR Code

Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance

  • Qiu, Jin (Department of Building Services Engineering, The Hong Kong Polytechnic University) ;
  • Jiang, Liming (Department of Building Services Engineering, The Hong Kong Polytechnic University) ;
  • Usmani, Asif (Department of Building Services Engineering, The Hong Kong Polytechnic University)
  • Published : 2021.12.01

Abstract

Concrete structures may rarely collapse in fire incidents but fire induced damage to structural members is inevitable as a result of material degradation and thermal expansion. This requires certain repairing measures to be applied to restore the performance of post-fire members. A brief review on investigation of post-fire damage of concrete material and concrete structural members is presented in this paper, followed by a review of post-fire repair research regarding various types of repairing techniques (FRP, steel plate, and concrete section enlargement) and different type of structural members including columns, beams, and slabs. Particularly, the fire scenarios adopted in these studies leading to damage are categorized as three levels according to the duration of gas-phase temperature above 600℃ (t600). The repair effectiveness in terms of recovered performance of concrete structural members compared to the initial undamaged performance has been summarized and compared regarding the repairing techniques and fire intensity levels. The complied results have shown that recovering the ultimate strength is achievable but the stiffness recovery is difficult. Moreover, the current fire loading scenarios adopted in the post-fire repair research are mostly idealized as constant heating rates or standard fire curves, which may have produced unrealistic fire damage patterns and the associated repairing techniques may be not practical. For future studies, the realistic fire impact and the system-level structural damage investigation are necessary.

Keywords

Acknowledgement

The research is supported by the Start-up Fund of the Hong Kong Polytechnic University (P0031564). The financial support is gratefully acknowledged.

References

  1. Abdullah, M.A.H., Mohd Zahid, M.Z.A., Ayob, A., and Muhamad, K. (2019). "Flexural behavior of fire-damaged reinforced concrete beams repaired with high-strength fiber reinforced mortar." J. Struct. Fire Eng., 10(1), 56-75. https://doi.org/10.1108/jsfe-08-2017-0039
  2. Agrawal, A., and Kodur, V. (2019). "Residual response of fire-damaged high-strength concrete beams." Fire Mater., 43(3), 310-322. https://doi.org/10.1002/fam.2702
  3. Akca, A.H., and Ozyurt, N. (2020). "Post-fire mechanical behavior and recovery of structural reinforced concrete beams." Constr. Build. Mater., 253, 119188. https://doi.org/10.1016/j.conbuildmat.2020.119188
  4. Al-Nimry, H.S., and Ghanem, A.M. (2017). "FRP Confinement of Heat-Damaged Circular RC Columns." Int. J. Concr. Struct. Mater., 11(1), 115-133. https://doi.org/10.1007/s40069-016-0181-4
  5. Al-Nimry, H., Haddad, R., Afram, S., and Abdel-Halim, M. (2013). "Effectiveness of advanced composites in repairing heat-damaged RC columns." Mater. Struct. Constr., 46(11), 1843-1860. https://doi.org/10.1617/s11527-013-0022-8
  6. ASTM, E. (2007). "Standard Test Methods for Fire Tests of Building Construction and Materials." ASTM Int. Stand.,.
  7. Balaguru, P., Nanni, A., and Giancaspro, J. (2008). FRP composites for reinforced and prestressed concrete structures: a guide to fundamentals and design for repair and retrofit (CRC Press).
  8. Bastami, M., Baghbadrani, M., and Aslani, F. (2014). "Performance of nano-Silica modified high strength concrete at elevated temperatures." Constr. Build. Mater., 68, 402-408. https://doi.org/10.1016/j.conbuildmat.2014.06.026
  9. Bisby, L.A., Chen, J.F., Li, S.Q., Stratford, T.J., Cueva, N., and Crossling, K. (2011). "Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps." Eng. Struct., 33(12), 3381-3391. https://doi.org/10.1016/j.engstruct.2011.07.002
  10. Botte, W., and Caspeele, R. (2017). "Post-cooling properties of concrete exposed to fire." Fire Saf. J., 92, 142-150. https://doi.org/10.1016/j.firesaf.2017.06.010
  11. CEN (2005). "BS EN 1994-1-2:2005:Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1-2: General Rules-Structural Fire Design." CEN,.
  12. Chang, Y.F., Chen, Y.H., Sheu, M.S., and Yao, G.C. (2006). "Residual stress-strain relationship for concrete after exposure to high temperatures." Cem. Concr. Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029
  13. Chen, Y.H., Chang, Y.F., Yao, G.C., and Sheu, M.S. (2009). "Experimental research on post-fire behaviour of reinforced concrete columns." Fire Saf. J., 44(5), 741-748. https://doi.org/10.1016/j.firesaf.2009.02.004
  14. Chinthapalli, H.K., Chellapandian, M., Agarwal, A., and Suriya Prakash, S. (2020). "Effectiveness of hybrid fibre-reinforced polymer retrofitting on behaviour of fire damaged RC columns under axial compression." Eng. Struct., 211. https://doi.org/10.1016/j.engstruct.2018.10.079
  15. Chung, C.H., Im, C.R., and Park, J. (2013). "Structural test and analysis of RC slab after fire loading." Nucl. Eng. Technol., 45(2), 223-236. https://doi.org/10.5516/NET.09.2011.072
  16. Demir, U., Goksu, C., Binbir, E., and Ilki, A. (2020). "Impact of time after fire on post-fire seismic behavior of RC columns." Structures, 26, 537-548. https://doi.org/10.1016/j.istruc.2020.04.049
  17. Ding, Z., and Li, J. (2018). "A physically motivated model for fatigue damage of concrete." Int. J. Damage Mech., 27(8), 1192-1212. https://doi.org/10.1177/1056789517726359
  18. Ergun, A., Kurklu, G., Serhat Baspnar, M., and Mansour, M.Y. (2013). "The effect of cement dosage on mechanical properties of concrete exposed to high temperatures." Fire Saf. J., 55, 160-167. https://doi.org/10.1016/j.firesaf.2012.10.016
  19. Fu, Y.F., Wong, Y.L., Poon, C.S., Tang, C.A., and Lin, P. (2004). "Experimental study of micro/macro crack development and stress-strain relations of cement-based composite materials at elevated temperatures." Cem. Concr. Res., 34(5), 789-797. https://doi.org/10.1016/j.cemconres.2003.08.029
  20. Gao, W.Y., Hu, K.X., Dai, J.G., Dong, K., Yu, K.Q., and Fang, L.J. (2018). "Repair of fire-damaged RC slabs with basalt fabric-reinforced shotcrete." Constr. Build. Mater., 185, 79-92. https://doi.org/10.1016/j.conbuildmat.2018.07.043
  21. Haddad, R.H., Shannag, M.J., and Hamad, R.J. (2007). "Repair of heat-damaged reinforced concrete T-beams using FRC jackets." Mag. Concr. Res., 59(3), 223-231. https://doi.org/10.1680/macr.2007.59.3.223
  22. Haddad, R.H., Shannag, M.J., and Moh'D, A. (2008). "Repair of heat-damaged RC shallow beams using advanced composites." Mater. Struct. Constr., 41(2), 287-299. https://doi.org/10.1617/s11527-007-9238-9
  23. Haddad, R.H., Al-Mekhlafy, N., and Ashteyat, A.M. (2011). "Repair of heat-damaged reinforced concrete slabs using fibrous composite materials." Constr. Build. Mater., 25(3), 1213-1221. https://doi.org/10.1016/j.conbuildmat.2010.09.033
  24. Han, L.-H., Zhou, K., Tan, Q.-H., and Song, T.-Y. (2016). "Performance of Steel-Reinforced Concrete Column after Exposure to Fire: FEA Model and Experiments." J. Struct. Eng., 142(9), 04016055. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001511
  25. Han, L.H., Lin, X.K., and Wang, Y.C. (2006). "Cyclic performance of repaired concrete-filled steel tubular columns after exposure to fire." Thin-Walled Struct., 44(10), 1063-1076. https://doi.org/10.1016/j.tws.2006.10.001
  26. Hou, X.M., and Zheng, W.Z. (2010). "Experiment on and analysis of the mechanical performance of unbonded prestressed concrete continuous slab after elevated temperature." J. Hunan Univ. Nat. Sci., 37(2), 6-13.
  27. Ichikawa, Y., and England, G.L. (2004). "Prediction of moisture migration and pore pressure build-up in concrete at high temperatures." Nucl. Eng. Des., 228(1-3), 245-259. https://doi.org/10.1016/j.nucengdes.2003.06.011
  28. Industry, C. (2008). "Assessment , design and repair of fire-damaged concrete structures." Concr. Soc., (March).
  29. Irshidat, M.R., and Al-Saleh, M.H. (2017). "Flexural strength recovery of heat-damaged RC beams using carbon nanotubes modified CFRP." Constr. Build. Mater., 145, 474-482. https://doi.org/10.1016/j.conbuildmat.2017.04.047
  30. ISO (1975). "Fire resistance tests-elements of building construction." Geneva Int. Stand. ISO 834.
  31. Jadooe, A., Al-Mahaidi, R., and Abdouka, K. (2017). "Experimental and numerical study of strengthening of heat-damaged RC beams using NSM CFRP strips." Constr. Build. Mater., 154, 899-913. https://doi.org/10.1016/j.conbuildmat.2017.07.202
  32. Jadooe, A., Al-Mahaidi, R., and Abdouka, K. (2018). "Behaviour of heat-damaged partially-insulated RC beams using NSM systems." Constr. Build. Mater., 180, 211-228. https://doi.org/10.1016/j.conbuildmat.2018.05.279
  33. Jiang, C.J., Lu, Z.D., and Li, L.Z. (2017). "Shear Performance of Fire-Damaged Reinforced Concrete Beams Repaired by a Bolted Side-Plating Technique." J. Struct. Eng., 143(5), 1-8. https://doi.org/10.1016/j.engstruct.2017.04.005
  34. Jiang, C.J., Yu, J.T., Li, L.Z., Wang, X., Wang, L., and Liao, J.H. (2018). "Experimental study on the residual shear capacity of fire-damaged reinforced concrete frame beams and cantilevers." Fire Saf. J., 100, 140-156. https://doi.org/10.1016/j.firesaf.2018.08.004
  35. Khan, M.S., Prasad, J., and Abbas, H. (2010). "Shear strength of RC beams subjected to cyclic thermal loading." Constr. Build. Mater., 24(10), 1869-1877. https://doi.org/10.1016/j.conbuildmat.2010.04.016
  36. Kodur, V.K., and Agrawal, A. (2016). "Critical Factors Governing the Residual Response of Reinforced Concrete Beams Exposed to Fire." Fire Technol., 52(4), 967-993. https://doi.org/10.1007/s10694-015-0527-5
  37. Kodur, V., Green, M., Bisby, L., and Williams, B. (2004). "Evaluating the fire performance of FRP-strengthened concrete structures." Concr. Eng. Int., 8(2), 48-50.
  38. Kodur, V.K.R., Raut, N.K., Mao, X.Y., and Khaliq, W. (2013). "Simplified approach for evaluating residual strength of fire-exposed reinforced concrete columns." Mater. Struct. Constr., 46(12), 2059-2075. https://doi.org/10.1617/s11527-013-0036-2
  39. Kumar, P.M.V.U., Raju, M.P., and Rao, K.S. (2009). "Performance of repaired fire affected RC beams." Curr. Sci., 96(3), 398-402.
  40. Lee, J., Xi, Y., and Willam, K. (2008). "Properties of concrete after high-temperature heating and cooling." ACI Mater. J., 105(4), 334-341.
  41. Li, Y.-H., and Franssen, J.-M. (2011). "Test results and model for the residual compressive strength of concrete after a fire." J. Struct. Fire Eng., 2(1), 29-44. https://doi.org/10.1260/2040-2317.2.1.29
  42. Li, L.-Z., Liu, X., Luo, Y., Su, M.-N., and Zhu, J.-H. (2019a). "Flexural Performance of Bolted-Side-Plated Reinforced Concrete Beams with Buckling Restraining." ACI Struct. J., 116(2), 1-12.
  43. Li, L.Z., Jiang, C.J., Liu, B.Z., and Lu, Z.D. (2017). "Shear strengthening of fire-damaged reinforced concrete beams using bolted-side plating." Procedia Eng., 210, 186-195. https://doi.org/10.1016/j.proeng.2017.11.065
  44. Li, W., Wang, T., and Han, L.H. (2019b). "Seismic performance of concrete-filled double-skin steel tubes after exposure to fire: Experiments." J. Constr. Steel Res., 154, 209-223. https://doi.org/10.1016/j.jcsr.2018.12.003
  45. Lin, Y., Hsiao, C., Yang, H., and Lin, Y.F. (2011). "The effect of post-fire-curing on strengthvelocity relationship for nondestructive assessment of fire-damaged concrete strength." Fire Saf. J., 46(4), 178-185. https://doi.org/10.1016/j.firesaf.2011.01.006
  46. Ma, W., Yin, C., Zhou, J., and Wang, L. (2019). "Repair of fire-damaged reinforced concrete flexural members: A review." Sustainability, 11(19), 5199. https://doi.org/10.3390/su11195199
  47. Mostafaei, H., Vecchio, F.J., and Benichou, N. (2009). Seismic Resistance of Fire-Damaged Reinforced Concrete Columns. In ATC & SEI 2009 Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, pp. 1396-1407.
  48. Nassif, A. (2006). "Postfire full stress-strain response of fire-damaged concrete." Fire Mater., 30(5), 323-332. https://doi.org/10.1002/fam.911
  49. Papayianni, J., and Valiasis, T. (1991). "Residual mechanical properties of heated concrete incorporating different pozzolanic materials." Mater. Struct., 24(2), 115-121. https://doi.org/10.1007/BF02472472
  50. Park, S.J., Yim, H.J., and Kwak, H.G. (2015). "Effects of post-fire curing conditions on the restoration of material properties of fire-damaged concrete." Constr. Build. Mater., 99, 90-98. https://doi.org/10.1016/j.conbuildmat.2015.09.015
  51. Peng, G.F., Bian, S.H., Guo, Z.Q., Zhao, J., Peng, X.L., and Jiang, Y.C. (2008). "Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures." Constr. Build. Mater., 22(5), 948-955. https://doi.org/10.1016/j.conbuildmat.2006.12.002
  52. Phan, L.T., Lawson, J.R., and Davis, F.L. (2001). "Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete." Mater. Struct. Constr., 34(2), 83-91. https://doi.org/10.1007/BF02481556
  53. Poon, C.S., Azhar, S., Anson, M., and Wong, Y.L. (2001a). "Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures." Cem. Concr. Res., 31(9), 1291-1300. https://doi.org/10.1016/S0008-8846(01)00580-4
  54. Poon, C.S., Azhar, S., Anson, M., and Wong, Y.L. (2001b). "Strength and durability recovery of fire-damaged concrete after post-fire-curing." Cem. Concr. Res., 31(9), 1307-1318. https://doi.org/10.1016/S0008-8846(01)00582-8
  55. Roy, A.B.D., Sharma, U.K., and Bhargava, P. (2014). "Strengthening of heat damaged reinforced concrete short columns." J. Struct. Fire Eng., 5(4), 381-398. https://doi.org/10.1260/2040-2317.5.4.381
  56. Sarshar, R., and Khoury, G.A. (1993). "Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures." Mag. Concr. Res., 45(162), 51-61. https://doi.org/10.1680/macr.1993.45.162.51
  57. Tao, Z., and Han, L.H. (2007). "Behaviour of fire-exposed concrete-filled steel tubular beam columns repaired with CFRP wraps." Thin-Walled Struct., 45(1), 63-76. https://doi.org/10.1016/j.tws.2006.11.004
  58. Tao, Z., Han, L.H., and Wang, L.L. (2007). "Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire." J. Constr. Steel Res., 63(8), 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007
  59. Tao, Z., Han, L.H., and Zhuang, J.P. (2008). "Cyclic performance of fire-damaged concrete-filled steel tubular beam-columns repaired with CFRP wraps." J. Constr. Steel Res., 64(1), 37-50. https://doi.org/10.1016/j.jcsr.2007.02.004
  60. Thi, C.N., Pansuk, W., and Torres, L. (2015). "Flexural behavior of fire-damaged reinforced concrete slabs repaired with near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) rods." J. Adv. Concr. Technol., 13(1), 15-29. https://doi.org/10.3151/jact.13.15
  61. Thongchom, C., Lenwari, A., and Aboutaha, R.S. (2019). "Effect of sustained service loading on post-fire flexural response of reinforced concrete T-beams." ACI Struct. J., 116(3), 243-254.
  62. Wang, L., and Su, R.K.L. (2014). "Repair of fire-exposed preloaded rectangular concrete columns by postcompressed steel plates." J. Struct. Eng., 140(3), 1-10. https://doi.org/10.1016/j.engstruct.2014.04.041
  63. Wang, Y., Guo, W., Huang, Z., Long, B., Yuan, G., Shi, W., and Zhang, Y. (2018). "Analytical model for predicting the load-deflection curve of post-fire reinforced-concrete slab." Fire Saf. J., 101, 63-83. https://doi.org/10.1016/j.firesaf.2018.09.002
  64. Xiang, K., Yu, J., and Lu, Z. (2009). "Experimental research on the bearing capacity of reinforced concrete continuous slab after fire." J. Xi'an Univ. Archit. Technol., 41(5), 650-654.
  65. Xiang, K., Wang, G.H., Zhao, T., and Lu, Z.D. (2011). "Experiment and analysis of CFRP strengthened fire-damaged reinforced concrete continuous T-beams." Procedia Eng., 11, 541-549. https://doi.org/10.1016/j.proeng.2011.04.694
  66. Xu, J., Tan, C., and Aboutaha, R. (2019a). "Experimental investigation of high strength reinforced concrete columns damaged by fire and retrofitted with CFRP jackets." IOP Conf. Ser. Earth Environ. Sci., 358(4).
  67. Xu, Q., Chen, L., Han, C., Harries, K.A., and Xu, Z. (2019b). "Experimental research on fire-damaged RC continuous T-beams subsequently strengthened with CFRP sheets." Eng. Struct., 183, 135-149. https://doi.org/10.1016/j.engstruct.2019.01.025
  68. Xu, Z., Feng, K., Zhang, W., and Yang, Z. (2005a). "Experimental analysis of CFRP used to strenghten RC beam after fire." J. Harbin Inst. Technol., 37(1), 98-100. https://doi.org/10.3321/j.issn:0367-6234.2005.01.025
  69. Xu, Z., Guo, X., and Zhang, Y. (2005b). "Experiment on using CFRP to Strengthen Full - scale Reinforced Concrete Beam after Fire." Fire Saf. Sci., 14(1), 35-40. https://doi.org/10.3969/j.issn.1004-5309.2005.01.007
  70. Yang, H., Lin, Y., Hsiao, C., and Liu, J.Y. (2009). "Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity." Fire Saf. J., 44(1), 121-130. https://doi.org/10.1016/j.firesaf.2008.05.003
  71. Yang, Y., Feng, S., Xue, Y., Yu, Y., Wang, H., and Chen, Y. (2019). "Experimental study on shear behavior of fire-damaged reinforced concrete T-beams retrofitted with prestressed steel straps." Constr. Build. Mater., 209, 644-654. https://doi.org/10.1016/j.conbuildmat.2019.03.054
  72. Yaqub, M., and Bailey, C.G. (2011a). "Cross sectional shape effects on the performance of post-heated reinforced concrete columns wrapped with FRP composites." Compos. Struct., 93(3), 1103-1117. https://doi.org/10.1016/j.compstruct.2010.09.012
  73. Yaqub, M., and Bailey, C.G. (2011b). "Repair of fire damaged circular reinforced concrete columns with FRP composites." Constr. Build. Mater., 25(1), 359-370. https://doi.org/10.1016/j.conbuildmat.2010.06.017
  74. Yaqub, M., and Bailey, C.G. (2012). "Seismic performance of shear critical post-heated reinforced concrete square columns wrapped with FRP composites." Constr. Build. Mater., 34, 457-469. https://doi.org/10.1016/j.conbuildmat.2012.02.076
  75. Yaqub, M., Bailey, C.G., and Nedwell, P. (2011). "Axial capacity of post-heated square columns wrapped with FRP composites." Cem. Concr. Compos., 33(6), 694-701. https://doi.org/10.1016/j.cemconcomp.2011.03.011
  76. Yaqub, M., Bailey, C.G., Nedwell, P., Khan, Q.U.Z., and Javed, I. (2013). "Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets." Compos. Part B Eng., 44(1), 200-211. https://doi.org/10.1016/j.compositesb.2012.05.041
  77. Zhang, Y., and Xu, Z. (2009). "Experimental on strengthening fire-damaged reinforced concrete beam with carbon fiber reinforced polymer." J. Nat. Disasters, 18(1), 84-89. https://doi.org/10.3969/j.issn.1004-4574.2009.01.013
  78. Zhou, J., and Wang, L. (2019). "Repair of Fire-Damaged Reinforced Concrete Members with Axial Load: A Review." Sustainability, 11(4), 1-16.
  79. Zhou, K., and Han, L.H. (2018). "Experimental performance of concrete-encased CFST columns subjected to fullrange fire including heating and cooling." Eng. Struct., 165, 331-348. https://doi.org/10.1016/j.engstruct.2018.03.042