• Title/Summary/Keyword: high temperature $\beta$ phase

Search Result 134, Processing Time 0.024 seconds

Electrical Properties of ZnO-Bi2O3-Sb2O3 Ceramics (ZnO-Bi2O3-Sb2O3 세라믹스의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.738-748
    • /
    • 2008
  • In this study, it has been investigated on the changing behavior of electrical properties in $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0 and 0.5) ceramics. The samples were prepared by conventional ceramic process, and then characterized by I-V, C-V curve plots, impedance and modulus spectroscopy (IS & MS) measurement. The electrical properties of ZBS systems were strongly dependent on Sb/Bi. In ZBS systems, the varistor characteristics were deteriorated noticeably with increasing Sb/Bi and the donor density and interface state density were increased with increasing Sb/Bi. On the other hand, we observed that the grain boundary reacted actively with the ambient oxygen according to Sb/Bi ratio. Especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature. Besides, the increased pyrochlore and $\beta$-spinel phase with Sb/Bi ratio caused the distributional inhomogeneity in the grain boundary barrier height and the temperature instability. To the contrary, the grain boundary layer was relatively homogeneous and more stable to temperature change and kept the system highly nonlinear at high Bi-rich phase contents.

Exponent Study of the p($2{\times}1$) Phase on an O/W(110) Surface (O/W(110) 표면의 p($2{\times}1$) 구조의 임계지수 연구)

  • 백두현;정석민;정진욱
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.88-95
    • /
    • 1992
  • Abstract-Using a high resolution low energy electron diffraction(HRLEED), we report an exponent study of 2d continuous phase transition from an ordered ~ ( 2 x 1 )ox ygen overlayer on a W(110) surface. Temperature dependence of a (% 0) superlattice diffraction spot, characteristic of the p(2X 1) structure, shows power-law like divergence of the susceptibility and the fluctuation correlation length at T,=708.765 K. By fitting the intensities as well as the line-shapes, we obtained exponents P=0.19* 0.05, y=1.48+ 0.34, v= 1.23i 0.27 and q=0.38+ 0.12. The non-universal character of the exponents are understood in terms of a 2d XY model with cubic anisotropy as suggested previously.

  • PDF

Study on the glass-ceramics containing coal bottom ashes fabricated by 2-stages heat treatment method (2단계 열처리법으로 제조된 석탄바닥재가 주성분인 결정화 유리에 관한 연구)

  • Jo, Si-Nae;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.272-277
    • /
    • 2010
  • The glass-ceramics containing bottom ash (B/A) which was a by-produced from an electrical power plant was fabricated and its crystalline phase, microstructure and mechanical properties were analyzed. At first, the glass was fabricated by adding modifier oxide $Li_2O$ to lower the melting temperature of coal bottom ash. The glass obtained was heat-treated by using a 2-stage process to crystallize, that is to say, to increase the degree of crystallization in the glass-ceramics, the first heat treatment for nucleation was performed followed by the secondary one for the growth of nucleates. The main crystalline phase formed in the glass-ceramics was ${\beta}$-spodumene and the secondary phase was $L_2SiO_3$. It was recognized that the degree of crystallization of glass-ceramics was increased with a holding time of the secondary heat treatment stage. In the case of the specimens hold up to 3 hour, the crystallization was not completed and the microstructures and morphologies of crystalline phase were not uniform. In the specimens of holding time over 9 hours, the cracks were generated inside of it, so its compressive strength would decrease due them. In conclusion, it was able to obtain the optimum condition to fabriate the glass-ceramics having the properties of high crystallization degree, uniform microstructures and morphologies and the high mechanical strength.

The Preparation and Electrochemical Properties of $MnO_2$ Cathode for Lithium Rechargeable Battery (리튬 전지용 $MnO_2$ Cathode의 제조 및 전기화학적 특성)

  • Yu, Y.H.;Kim, Y.J.;Park, J.K.;Seo, B.W.;Jeong, I.S.;Kim, J.S.;Park, B.K.;Gu, H.B.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1682-1684
    • /
    • 1996
  • Recently, because diffusion of cordless machine and smart card and so on, and concern of unpolluted materials, one are concerned with Li secondary batteries. Li secondary batteries have high voltage, high energy density and high power density, and heavy metal pollution problems are little. Mn is low price and is distributed much quantity. Therefore, we investigated $MnO_2$. In this study, we worked the electrochemical properties and charge/discharge characteristics of $MnO_2/Li$ cells. In results, the more heating temperature is high, the more ${\gamma}-phase$ varied ${\beta}-phase$, and when $MnO_2$ is heated at $320^{\circ}C$ and super-s-black 20wt% is mixed, characteristics are the best.

  • PDF

Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$ (수열합성 조건에 따른 나노로드 클러스터형 $MnO_2$의 상변화와 이를 이용한 $LiMn_2O_4$의 리튬이온전지 양전극 특성)

  • Kang, Kun-Young;Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.541-547
    • /
    • 2011
  • Nanorod-clustered $MnO_2$ precursors with ${\alpha}$-, ${\beta}$-, and ${\gamma}$-phases are synthesized by hydrothermal reaction of $MnSO_45H_2O$ and $(NH_4)S_2O_8$. The formation of nanorod-clustered ${\beta}-MnO_2$ is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at $150^{\circ}C$. The spinel $LiMn_2O_4$ nanorod-clusters are also prepared by lithiating the $MnO_2$ precursors, varying the concentration of lithiating agent ($LiC_3H_3O_2{\cdot}2H_2O$) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorod-clustered $LiMn_2O_4$ prepared from the ${\beta}-MnO_2$ at higher $LiC_3H_3O_2{\cdot}2H_2O$ concentration and the annealing at $800^{\circ}C$ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.

Optical Characteristics of Iron Silicide Films Prepared by Plasma CVD (Plasma CVD에 의해 제조된 Iron Silicide 박막의 광학적 특성)

  • Kim, Kyung-soo;Yoon, Yong-soo;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.343-348
    • /
    • 1999
  • The iron silicide films were prepared by chemical vapor deposition method using rf-plasma in variations of substrate temperature. rf-power, and ratio of $SiH_4$ and Fe-precursor. While iron silicide films are generally grown by ion beam synthesis (IBS) method of multi-step process, it is confirmed that iron silicide or $\beta$-phase consolidated $Fe_aSi_bC_cH_d$ was formed by one-step process in this study. The characteristics of films is variable because the different amounts of carbon and hydrogen was involved in the films as a function of dilute ratio of Fe-precursors and silane. It was shown that the different characteristics of films in carbon and hydrogen following the ratio of Fe-precursor and silane. The optical gap energy of films fabricated according to substrate temperature was invariant because active site brought in desorption of hydrogen was limiled. When rf-power was above 240 watt, the optical gap energy turned out to have high values because of dangling bonds increased by etching.

  • PDF

Properties of $SiC-ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering (SPS 소결에 의한 $SiC-ZrB_2$ 도전성 세라믹 복합체 특성)

  • Ju, Jin-Young;Lee, Hui-Seung;Jo, Sung-Man;Lee, Jung-Hoon;Kim, Cheol-Ho;Park, Jin-Hyoung;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1757-1763
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between ${\beta}-SiC$ and $ZrB_2$ were not observed in the XRD analysis. The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.93[%], 74.62[%], 74.99[%] and 72.61[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The lowest flexural strength, 108.79[MPa], shown in SiC+15[vol.%] $ZrB_2$ composite and the highest - 220.15[MPa] - in SiC+20[vol.%] $ZrB_2$composite at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites moves in accord with that of the relative density. The electrical resistivities of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 4.57${\times}10^{-1}$, 2.13${\times}10^{-1}$, 1.53${\times}10^{-1}$ and 6.37${\times}10^{-2}$[${\Omega}$ cm] at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$. SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. The declination of V-I characteristics of SiC+20[vol.%]$ZrB_2$ composite is 3.72${\times}10^{-1}$. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode above 1000[$^{\circ}C$]

Physicochemical Characteristics of ${\beta}-Glucan$ Isolated from Barley (보리로부터 분리한 ${\beta}-Glucan$의 이화학적 특성)

  • Kim, Sung-Ran;Choi, Hee-Don;Seog, Ho-Moon;Kim, Sung-Soo;Lee, Young-Tack
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1164-1170
    • /
    • 1999
  • The physicochemical characteristics of ${\beta}-glucan$ isolated from waxy and non-waxy barley were investigated. The hull-less waxy and non-waxy barley containing 6.5% and 5.3% of total ${\beta}-glucan$ respectively, were used as a starting material. The yield and ${\beta}-glucan$ content of crude ${\beta}-glucan$ from waxy barley was 5.54% and 62.9%, respectively, and those were higher than 3.34% and 59.2% from non-waxy barley. The crude ${\beta}-glucan$ purified with selective precipitation and enzymatic treatment to obtain the ${\beta}-glucan$ isolate of high purity (>99%). The total yield of purified ${\beta}-glucan$ from waxy and non-waxy barley was 4.46% and 2.59%, respectively. The surface appearance of the purified ${\beta}-glucan$ by scanning electron microscopy (SEM) showed randomly entangled multi-net structure of ${\beta}-glucan$ microfibrils. The melting temperature of ${\beta}-glucan$ from waxy and non-waxy barley measured by differential scanning calorimetry (DSC) was $184.6^{\circ}C$, and $180.3^{\circ}C$, respectively. DSC endotherm of ${\beta}-glucan$ solution showed 2 peaks near $68^{\circ}C$ and $84^{\circ}C$. Enthalpy of phase transition was higher in non-waxy ${\beta}-glucan$ than waxy ${\beta}-glucan$, and the intrinsic viscosity of ${\beta}-glucan$ solution from waxy barley was higher than that of non-waxy ${\beta}-glucan$. The pasting viscosity of barley starch with the purified ${\beta}-glucan$ determined by Rapid Visco-Analyzer was higher than that of barley starch without ${\beta}-glucan$, and the effect of ${\beta}-glucan$ on increasing the paste viscosity was greater in non-waxy barley starch.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.