• Title/Summary/Keyword: high strength concrete column

Search Result 446, Processing Time 0.033 seconds

Nominal axial and flexural strengths of high-strength concrete columns

  • Al-Kamal, Mustafa Kamal
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2019
  • The ACI building code is allowing for higher strength reinforcement and concrete compressive strengths. The nominal strength of high-strength concrete columns is over predicted by the current ACI 318 rectangular stress block and is increasingly unconservative as higher strength materials are used. Calibration of a rectangular stress block to address this condition leads to increased computational complexity. A triangular stress block, derived from the general shape of the stress-strain curve for high-strength concrete, provides a superior solution. The nominal flexural and axial strengths of 150 high-strength concrete columns tests are calculated using the proposed stress distribution and compared with the predicted strength using various design codes and proposals of other researchers. The proposed triangular stress model provides similar level of accuracy and conservativeness and is easily incorporated into current codes.

The Fire Resistant Performance of the High-Strength Concrete Column Covered with Aerogel Compound Inorganic Blanket and Gypsum board (에어로젤 복합 무기질 블랭킷 및 석고보드 피복 고강도콘크리트 기둥의 내화성능)

  • Yeo, In-Hwan;An, Jae-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.201-203
    • /
    • 2011
  • The purpose of this study was to develop and evaluate of fire resistive cladding systems for HSC(high-strength concrete) column, which was mainly constructed with aerogel blanket insulation material. The aerogel blanket-fire protective gypsum board cladding system showed that it clearly secure the fire resistance performance of HSC column when the reinforcing measures had achieved for four cross-sectional edge sides of structure and the system is well continued during the test period with no significant deformation or separation etc. It was checked out the 20mm thickness cladding system consist with AG(5mm)+FGB(15mm) can secure 3hour-fire resistance performance adequately.

  • PDF

The Structural Behavior of $700kg/cm^2$ High Strength Concrete Frames Considering Extension Distances at Joints (내민길이를 고려한 $700kg/cm^2$ 고강도 콘크리트 골조의 구조적거동)

  • 신성우;안종문;윤영수;이승훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.140-148
    • /
    • 1994
  • RCI 318-8!4 recommends that when the specified cornpresslve strength of concrete In a column is greater than 1.4 times thdt spec~f~ed for a floor svsttm. top surface of the colunm concrete shall extend 2ft(600mm) into the slab from the face of colurnn to avoid unexpected brittle failure. Six test specimens were cast arid tested on 2/3 scale frame specmiens havlng different extension distances and compressive strength of concrete as the major variables. The paper discusses the performance of the frames in terms of ductility and also presents the assessment of the ACI 318-89 provisions.The test results showed that the ductility index were incrrased with increasing of compressive strength of concrete and extension distance. And top surface of the column concrete should extend 2h(h overall depth of beam) into the beam from the face of the column to avoid unexpected brittle failure in frame.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

Numerical analysis of the seismic performance of RHC-PVCT short columns

  • Xue, Jianyang;Zhao, Xiangbi;Ke, Xiaojun;Zhang, Fengliang;Ma, Linlin
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.257-267
    • /
    • 2019
  • This paper presents the results of cyclic loading tests on new high-strength concrete (HC) short columns. The seismic performance and deformation capacity of three reinforced high-strength concrete filled Polyvinyl Chloride tube (RHC-PVCT) short columns and one reinforced high-strength concrete (RHC), under pseudo-static tests (PSTs) with vertical axial force was evaluated. The main design parameters of the columns in the tests were the axial compression ratio, confinement type, concrete strength, height-diameter ratio of PVCT. The failure modes, hysteretic curves, skeleton curves of short columns were presented and analyzed. Placing PVCT in the RHC column could be remarkably improved the ultimate strength and energy dissipation of columns. However, no fiber element models have been formulated for computing the seismic responses of RHC-PVCT columns with PVT tubes filled with high-strength concrete. Nonlinear finite element method (FEM) was conducted to predict seismic behaviors. Finite element models were verified through a comparison of FEM results with experimental results. A parametric study was then performed using validated FEM models to investigate the effect of several parameters on the mechanical properties of RHC-PVCT short columns. The parameters study indicated that the concrete strength and the ratio of diameter to height affected the seismic performance of RHC-PVCT short column significantly.

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

An Experimental Study on the Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and Axial Forces (축력과 반복횡력을 받는 고강도 R/C 기둥의 횡보강근 효과에 관한 실험적 연구)

  • 한범석;이지영;안종문;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.493-498
    • /
    • 1998
  • An experimental investigation was conducted to examine the behavior of high-strength concrete R/C columns subjected to moment, shear and axial load. The test parameters of specimens were the compressive strength of concrete(f'c=250, 516, 600kg/ ㎠), space of lateral reinforcement (20, 30, 37cm) and lateral reinforcement ratio(ρs=2.1, 3.15%). Test results indicated that compressive strength of concrete and lateral reinforcement can significantly affect and alter the behavior of column under inelastic cyclic loadings. Despite of the defaults of high-strength concrete, with increased amount of lateral reinforcement ratio to core concrete and added sub-lateral reinforcement, ductility and strength of RC columns used high-strength concrete can secured.

  • PDF

The Variations on The Fire Resistance of High Strength Concrete Column Incorporating Organic Fiber with Assessment Methods (유기 섬유 혼입 고강도 콘크리트 부재의 평가 방법에 따른 내화성능 변화에 관한 연구)

  • Lee, Seung-Hoon;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.945-948
    • /
    • 2008
  • Fire resistance is a measure of the ability of building element to resist a fire. For concrete columns, the fire resistance depends on many factors, including strength, density, and moisture content of concrete, fire intensity, column size and shape, reinforcement detail, loading condition, and aggregate type etc. However, it is well-known that the high strength concrete (HSC) is more susceptible to spalling than normal strength concrete (NSC) and the behaviour of HSC column exposed to fire is significantly affected by the spalling. Recently, as one of the measures to reduce the spalling of HSC, incorporating polypropylene(PP) fiber has been investigated and successfully used in construction fields. However, the establishment of assessment method on the fire resistance of HSC column is very important as well as the improvement of fire performance of HSC. In this study, the variations on the fire resistance of HSC column with assessment methods was studied for the columns controlled the concrete spalling by PP fiber.

  • PDF

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang;Zhou, Xuhong;Liu, Jiepeng;Wang, Xuanding
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.411-422
    • /
    • 2019
  • Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.