• 제목/요약/키워드: high strength aluminum alloy

검색결과 222건 처리시간 0.028초

이종 주조알루미늄-고장력강의 겹치기 마찰교반접합에서 툴회전속도에 따른 기계적 특성평가 (Evaluation of Mechanical Properties with Tool Rotational Speed in Dissimilar Cast Aluminum and High-Strength Steel of Lap Jointed Friction Stir Welding)

  • 박정훈;박성환;박수형;주영환;강명창
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.90-96
    • /
    • 2019
  • Recently, friction stir welding of dissimilar materials are one of the biggest issues in terms of light-weight and eco-friendly technology of the automotive, aircraft and ship industry. In this study, friction stir welding of dissimilar materials is introduced with different tool rotational speed. Materials used in experimentation consist of A357 gravity cast aluminum alloy and FB590 high-strength steel plates. Dissimilar materials of plate type are fabricated with width of 150mm, length of 300mm and thickness of 3mm and welding is carried out by the lap joint method. The correlation between probe length and mechanical properties were investigated according to rotational speed and welding speed at tool tilt angle 0 degree. Consequently, feasibility of FSWed dissimilar materials were successfully presented in case of cast aluminum and high-strength steel at lap joint method.

초고장력강과 알루미늄 합금의 접합을 위한 SPR 설계 (Design of self-piercing rivet to joint in advanced high strength steel and aluminium alloy sheets)

  • 김동범;추연근;조해용
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.75-80
    • /
    • 2015
  • Self-piercing riveting is an joining method of advanced high strength steels (AHSS) and other dissimilar materials. It has attracted considerable interest from the automotive industry. The SPR has become an interesting alternative joining technique for difficult to weld materials such as steels and aluminium alloys. In this paper, self-piercing rivet and anvil for SPR were designed for the joining conditions with AHSS and aluminium alloy. Various conditions of SPR were simulated for the design of rivets and anvils. The simulated results were in good agreement with experimental ones. As a result, over HV500 rivet is desirable to joint SPFC780 AHSS and aluminum alloy.

고강도 고인성 Al-Mg-Zn 주조합금의 미세조직 및 특성 (Microstructure and Properties of High Strength High Ductility Al-Mg-Zn Casting Alloy)

  • 김정민;하태형
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.181-186
    • /
    • 2016
  • The typical microstructure of Al-5%Mg-2%Zn cast alloy mainly consists of an aluminum matrix with a small amount of AlMgZn 2nd phase. The secondary dendrite arm spacing and the grain size of the cast alloy tend to be inversely proportional to the section thickness of casting; however, the tensile properties cannot be said to be clearly related to the cast microstructure. After T6 heat treatment, the tensile strength of the alloy was enhanced significantly. TEM analysis results show that very fine AlMgZn precipitates were formed after the heat treatment. The corrosion resistance, measured according to the corrosion potential, was found to increase slightly after the conducting of heat treatment.

열처리형 Al 압출재를 이용한 하이드로포밍 부품개발 (Development of Hydroformed Automotive Parts with Heat-treatable Aluminum Extrudates)

  • 이문용;강창룡;류성지
    • 열처리공학회지
    • /
    • 제17권3호
    • /
    • pp.165-172
    • /
    • 2004
  • Compared with the hydroforming technology for steel, the hydroforming technology for aluminum has not been actively investigated. Recently, the hydroforming of high strength aluminum tubes has attracted great interest because of its good strength to weight ratio. In this study, front side member (FSM) is fabricated with the hydroforming of aluminum tube and the mechanical properties and dimensional accuracy of the hydroformed FSM is investigated. For hydroforming process, extruded aluminum tubes with ribs to improve the structural rigidity are used. To ensure the mechanical properties, the aluminum tubes are T6 heat-treated before hydroforming.

5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성 (Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy)

  • 옹장우;진근찬;이성근;김종배
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.461-471
    • /
    • 1989
  • 본 연구에서는 혼합 모우드 균열문제의 연구를 위하여 .KAPPA.$_{II}$ /.KAPPA.S1I\ulcorner조절이 간편하고, 균열진전경로가 하중방향에 따른 균일전면의 자유표면의 영향을 균일하게 한 시험편(이하 RCM 또는 round compact mixed-mode 시험편이라 한다)을 고안하여 균열길이 및 하중작용 방향에 따른 .KAPPA.$_{I}$ 및 .KAPPA.S1II를 수치해석한 다음 일반화 하였다. 또 고강도와 용접성이 요구되는 항공기부품, 압력용기, 지상운송차량 등에 사용되고 있는 5083-H115 알루미늄 합금에 대해 혼합 모우드 균열진전 방향 및 피로균열 진전특성을 분석하고자 한다.다.

AC4C 알루미늄 합금의 정적 및 동적 특성 (Static and Dynamic Characteristics of AC4C Aluminum Alloy)

  • 권용구;주원경;송정일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.220-225
    • /
    • 2007
  • The mechanical characteristics of AC4C Aluminum Casting Alloy were investigated by tensile test and impact test. Based on the tensile test' s result, we found that the yield strength of a high speed was about 10% higher than that of a low speed test and the maximum rupture strain mostly occurred in low speed tensile test. The impact energy of curved surface specimen was higher than that of plane surface specimen that can be measured in impact test.

  • PDF

Multi-feeder 3차원 적층제조 기반 조합실험을 활용한 알루미늄 합금탐색 (Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment)

  • 박수원;송용욱;여지윤;한송윤;최현주
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.255-261
    • /
    • 2023
  • Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성 (Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions)

  • 김준탁;김상호
    • 한국표면공학회지
    • /
    • 제41권3호
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.

극저온 열처리 공정이 6061 알루미늄 합금의 잔류응력과 인장특성에 미치는 영향 (Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy)

  • 박기정;고대훈;김병민;임학진;이정민;조영래
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.9-16
    • /
    • 2011
  • To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.

통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측 (Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm)

  • 정진수;이희근;박영환
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.