DOI QR코드

DOI QR Code

Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy

극저온 열처리 공정이 6061 알루미늄 합금의 잔류응력과 인장특성에 미치는 영향

  • Park, Kijung (Dept. of Materials Science and Engineering, Pusan National University) ;
  • Ko, Dea Hoon (Dept. of Mechanical Engineering, Pusan National University) ;
  • Kim, Byung Min (Dept. of Mechanical Engineering, Pusan National University) ;
  • Lim, Hak Jin (PoongSan Corporation) ;
  • Lee, Jung Min (PoongSan Corporation) ;
  • Cho, Young-Rae (Dept. of Materials Science and Engineering, Pusan National University)
  • Received : 2010.09.09
  • Published : 2011.01.25

Abstract

To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.

Keywords

Acknowledgement

Supported by : 방위사업청

References

  1. J. K. Kim, H. G. Jeong, S. I. Hong, Y. S. Kim, and W. J. Kim, Scripta Mater. 45, 901 (2001). https://doi.org/10.1016/S1359-6462(01)01109-5
  2. O. R. Myhr, O. Grong, and S. J. Anderson, Acta Mater. 49, 65 (2001). https://doi.org/10.1016/S1359-6454(00)00301-3
  3. L. J. Chen, C. Y. Ma, G. M. Stoica, P. K. Liaw, C. Xu, and T. G. Langdon, Mater. Sci. Eng. A 410, 472 (2005).
  4. D. G. Lee, J. H. Lee, J. H. Kim, N. K. Park, Y. Lee, and H. S. Jeong, J. Kor. Inst. Met. & Mater. 46, 449 (2008).
  5. H. S. Kim and D. N. Lee, J. Kor. Inst. Met. & Mater. 16, 233 (1978).
  6. P. Juijerm and I. Altenberger, Acta Mater. 55, 1111 (2006).
  7. G. P. Dolan and J. S. Robinson, J. Mater. Process. Technol. 153-154, 346 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.065
  8. P. Juijerm and I. Altenberger, Mater. Sci. Eng. A 452, 475 (2007).
  9. K. E. Lulay, K. Khan, and D. Chaaya, J. Mater. Eng. Perform. 11, 479 (2002). https://doi.org/10.1361/105994902770343683
  10. W. M. Kays and M.E. Crawford, Convection heat and mass transfer, 2nd ed., p.870-874, MaGraw-Hill. New York (1980).
  11. W. Tang, L. Deng, K. Xu, and J. Lu, Surf. Coat. Technol. 201, 5944 (2007). https://doi.org/10.1016/j.surfcoat.2006.10.049
  12. P. S. Prevey, American Society for Metals 96, 47 (1991).
  13. K. C. Ho, J. Lin, and T. A. Dean, J. Mater. Process. Technol. 153-154, 122 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.304
  14. L. Zhen and S. B. Kang, Mater. Lett. 37, 349 (1998). https://doi.org/10.1016/S0167-577X(98)00118-9
  15. H. N. Hill, R. S. Barker, and L. A. Willey, American Society for Metals 52, 657 (1960).
  16. S. K. Panigrahi, R. Jayaganthan, and V. Pancholi, Materials and Design 30, 1894 (2009). https://doi.org/10.1016/j.matdes.2008.09.022
  17. R. Guemini, A. Boubertakh, and G. W. Lorimer, J. Alloy Compd. 486, 451 (2009). https://doi.org/10.1016/j.jallcom.2009.06.207